Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Novel Discretization Schemes For The Numerical Simulation Of Membrane Dynamics, Kyle F. Kolsti Sep 2012

Novel Discretization Schemes For The Numerical Simulation Of Membrane Dynamics, Kyle F. Kolsti

Theses and Dissertations

Motivated by the demands of simulating flapping wings of Micro Air Vehicles, novel numerical methods were developed and evaluated for the dynamic simulation of membranes. For linear membranes, a mixed-form time-continuous Galerkin method was employed using trilinear space-time elements, and the entire space-time domain was discretized and solved simultaneously. For geometrically nonlinear membranes, the model incorporated two new schemes that were independently developed and evaluated. Time marching was performed using quintic Hermite polynomials uniquely determined by end-point jerk constraints. The single-step, implicit scheme was significantly more accurate than the most common Newmark schemes. For a simple harmonic oscillator, the scheme …


The Characterization Of Material Properties And Structural Dynamics Of The Manduca Sexta Forewing For Application To Flapping Wing Micro Air Vehicle Design, Ryan P. O'Hara Sep 2012

The Characterization Of Material Properties And Structural Dynamics Of The Manduca Sexta Forewing For Application To Flapping Wing Micro Air Vehicle Design, Ryan P. O'Hara

Theses and Dissertations

The Manduca Sexta species of moth serves as a source of biological inspiration for the future of micro air vehicle flapping flight. The ability of this species to hover in flapping flight has warranted investigation into the critical material, structural, and geometric properties of the forewing of this biological specimen. A rigorous morphological study of the Manduca Sexta forewing was conducted to characterize the physical and material properties of the biological forewing for the purpose of developing an advanced parametric three dimensional model finite element analysis (FEA) model. This FEA model was tuned to match the experimentally determined structural dynamics …


Freedrop Testing And Cfd Simulation Of Ice Models From A Cavity Into Supersonic Flow, Thomas J. Flora Sep 2012

Freedrop Testing And Cfd Simulation Of Ice Models From A Cavity Into Supersonic Flow, Thomas J. Flora

Theses and Dissertations

Weapon release at supersonic speeds from an internal bay is highly advantageous. For this reason, both experimental and numerical methods were used to investigate store separation from a cavity (L=D=4.5) into Mach 2.94 flow. The experiment used a piezoresistive pressure transducer, Schlieren and high-speed photography for data acquisition. The computational solution used the OVERFLOW solver. A sphere and a Mk-82, scaled to 1:20, were formed using frozen tap water. The sphere model was freedrop tested experimentally and computationally, while the sub-scale store shaped model was freedrop tested experimentally. The total pressure was varied to alter the dynamic response of the …


Evaluation Of The Thorax Of Manduca Sexta For Flapping-Wing Micro Air Vehicle Applications, Alex C. Hollenbeck Mar 2012

Evaluation Of The Thorax Of Manduca Sexta For Flapping-Wing Micro Air Vehicle Applications, Alex C. Hollenbeck

Theses and Dissertations

The tobacco hornworm hawkmoth (Manduca sexta) provides an excellent model from which to garner knowledge pertaining to the development of a Flapping Wing Micro Air Vehicle (FWMAV). Insect-sized FWMAVs will be used by the future warfighter for reconnaissance, nuclear/chemical/biological hazard sensing, and targeting. One of the major challenges facing FWMAV developers is the energetically demanding nature of low Reynolds flapping flight. Investigating the Manduca sexta thorax/wing flapping mechanism as a mechanical system will provide insight into its inherent efficiency. This thesis examined the energetics of the thorax under static loading and dynamic loading using an innovative load-application technique. It was …


Validation Of The Chemistry Module For The Euler Solver In Unified Flow Solver, William C. Humphrey Jr. Mar 2012

Validation Of The Chemistry Module For The Euler Solver In Unified Flow Solver, William C. Humphrey Jr.

Theses and Dissertations

In the world of computational fluid dynamics (CFD), three main types of flow regimes exist: continuum, rarified, and free molecular. Of these regimes, the rarified regime is the most difficult to model because the continuum equations don't apply and using the Boltzmann equation is too computationally expensive to use. The Unified Flow Solver (UFS) is currently being developed to solve this problem by using the kinetic continuum Euler equations where valid, and only using the Boltzmann equation where necessary, thus reducing the computational cost. The use of the kinetic Euler equations helps to aid in the coupling of the Euler …


Computational Analysis And Characterization Of Rc-135 External Aerodynamics, Michael G. Chenery Mar 2012

Computational Analysis And Characterization Of Rc-135 External Aerodynamics, Michael G. Chenery

Theses and Dissertations

Both the RC-135V/W Rivet Joint (RJ) and the RC-135U Combat Sent (CS) aircraft are United States Air Force (USAF) electronics reconnaissance platforms. The RJ is the USAF's standard airborne signals intelligence (SIGINT) gathering platform, while the CS is designed to collect technical intelligence on adversary radar emitter systems. Both aircraft are extensively modified C-135's characterized by protruding cheek fairings along the sides of the fuselage forward of the wings as well as the addition of numerous antennas along the top and bottom of the fuselage. The major distinguishing feature between the two variants is the nose radome, wherein the RJ …


Boundary Layer Measurements In The Trisonic Gas-Dynamics Facility Using Particle Image Velocimetry With Co₂ Seeding, Daniel B. Wolfe Mar 2012

Boundary Layer Measurements In The Trisonic Gas-Dynamics Facility Using Particle Image Velocimetry With Co₂ Seeding, Daniel B. Wolfe

Theses and Dissertations

Particle image velocimetry (PIV) is utilized with solid carbon dioxide (CO2) seeding material to conduct boundary layer measurements in the test section of the Air Force Research Laboratory's Trisonic Gas-dynamics Facility (TGF), which has a 24 inch by 24 inch cross-section. Freestream velocity was set at Mach 0.3, Mach 0.5, or Mach 0.8 while stagnation pressure ranged from 500 to 2400 pounds per square foot (psf). High pressure liquid CO2 was directed through expansion nozzles into shroud tubes which led to solidified particles in the wind tunnel stagnation chamber. Two different sets of shroud tubes were used …


Reynolds Number Effects On Thrust Coefficients And Piv For Flapping Wing Micro Air Vehicles, John P. Tekell Mar 2012

Reynolds Number Effects On Thrust Coefficients And Piv For Flapping Wing Micro Air Vehicles, John P. Tekell

Theses and Dissertations

For the last several years the Air Force Institute of Technology (AFIT) has conducted research in aerodynamics for flapping wing micro air vehicles (MAVs). The focus of this research was to augment this effort by measuring thrust, velocity, and torque in tanks of water and glycerin using a scale and a reaction torque cell. The results for different flapping mechanisms are compared to a rotating propeller with the goal of elucidating the design trade space between rotorcraft and flapping wings at Reynolds numbers less than 100,000. In addition, flow visualization and quantitative velocity data were captured in the wake of …