Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Locking Solar Tracking Bushing, Benjamin James Reed, Andrew Donald Maas, Angel Navarro-Iniguez, John Vincent Bruner Dec 2022

Locking Solar Tracking Bushing, Benjamin James Reed, Andrew Donald Maas, Angel Navarro-Iniguez, John Vincent Bruner

Mechanical Engineering

The contents of this final design review (FDR) outline the progress made by a team of four mechanical engineering students at California Polytechnic State University, San Luis Obispo to solve the problem of torsional galloping in solar tracker panels since the preliminary design review. The project proposed by the sponsor, Christian Friedrich, on behalf of ARaymond is a design for a friction based braking system integrated into a redesigned bushing.

The CDR contains details about the system design, the design justification, the manufacturing plan, and design verification plan. In the system design section, the four manufacturing subsystems (bushing mount, actuation, …


Manipulation And Patterning Of Mammalian Cells Using Vibrations And Acoustic Forces, Joel Cooper Apr 2020

Manipulation And Patterning Of Mammalian Cells Using Vibrations And Acoustic Forces, Joel Cooper

USF Tampa Graduate Theses and Dissertations

Recently, there has been a surge in researchers and scientists investigating different methods which move, manipulate, and pattern biological cells. Multiple different mechanisms can be used for cellular manipulation, microfluidics, biochemical queues, and even optics, just to name a few. However, all techniques have their downsides. A majority of these methods require expensive equipment or reagents and can only manipulate a small number of cells at a time.

Some of the most common cell manipulation devices utilize acoustic pressure waves to move the cells to desired locations. Currently, it is unknown what level of force from these types of devices …


Theoretical Study Of Fano Resonance In A Mechanical System, Alex Alberts Jan 2019

Theoretical Study Of Fano Resonance In A Mechanical System, Alex Alberts

Williams Honors College, Honors Research Projects

Resonance conditions are a major area of study in theoretical and experimental investigation. Normally, a resonance condition is characterized by a symmetric shape on either side of the resonance. In some cases, we can observe an asymmetric resonance shape, which is called a Fano resonance. We will study the appearance of Fano resonance in a purely mechanical system. The frequency response of the primary system is approximated using the method of multiple scales focusing on the location of the resonance condition. Then, curve fitting is used to approximate the Fano parameter associated with the system, which provides a measurement of …


Development Of A Fully Instrumented, Resonant Tensegrity Strut, Kentaro Barhydt Jun 2018

Development Of A Fully Instrumented, Resonant Tensegrity Strut, Kentaro Barhydt

Honors Theses

A tensegrity is a structure composed of a series of rigid members connected in static equilibrium by tensile elements. A vibrating tensegrity robot is an underactuated system in which a set of its struts are vibrated at certain frequency combinations to achieve various locomotive gaits. Evolutionary robotics research lead by Professor John Rieffel focuses on exploiting the complex dynamics of tensegrity structures to control locomotion in vibrating tensegrity robots by finding desired gaits using genetic algorithms. A current hypothesis of interest is that the optimal locomotive gaits of a vibrating tensegrity exist at its resonant frequencies.

In order to observe …


Effects Of Tension On Resonant Frequencies Of Strings, Blake Burnett May 2018

Effects Of Tension On Resonant Frequencies Of Strings, Blake Burnett

Senior Theses

This project tests and explores resonance of strings. Since all materials and mechanisms are affected by vibrations, it is important to know the frequencies at which resonance occurs. To explore this subject, strings were used as a model material to test the effect tension has on resonance. The fundamental frequencies and the corresponding modes of resonance were used to analyze the data. The results of this experiment show that increasing tension on a string increases its resonance frequency. Understanding the physics behind resonance frequency allows systems to be designed to take advantage of resonance properties, or to avoid resonance where …


Resonance Frequencies Of A Spherical Aluminum Shell Subject To Static Internal Pressure, Andrew A. Piacsek, Sami Abdul-Wahid, Robert Taylor May 2012

Resonance Frequencies Of A Spherical Aluminum Shell Subject To Static Internal Pressure, Andrew A. Piacsek, Sami Abdul-Wahid, Robert Taylor

All Faculty Scholarship for the College of the Sciences

Measurements of the vibrational response of a spherical aluminum shell subject to changes in the interior pressure clearly demonstrate that resonance frequencies shift higher as the pressure is increased. The frequency shift appears to be smaller for longitudinal modes than for bending wave modes. The magnitude of frequency shift is comparable to analytical predictions made for thin cylindrical shells. Changes in the amplitudes of resonance peaks are also observed. A possible application of this result is a method for noninvasively monitoring pressure changes inside sealed containers, including intracranial pressure in humans.


Elastic And Magnetic Properties Of Tb6fe(Sb,Bi)2 Using Resonant Ultrasound Spectroscopy., David Michael Mccarthy Aug 2010

Elastic And Magnetic Properties Of Tb6fe(Sb,Bi)2 Using Resonant Ultrasound Spectroscopy., David Michael Mccarthy

Masters Theses

Tb6FeSb2 and Tb6FeBi2 are novel rare earth compounds with little prior research. These compounds show high and variable curie temperatures for rare-earth compounds. This has lead to a literature review which includes the discussion of: elasticity, resonance, and magnetism. This review is used to discuss the theory and methodology which can relate these various properties to each other. Furthermore, synthesis, x-ray analysis, and RUS sample preparation of Tb6FeSb2 and Tb6FeBi2 were completed.

Resonant Ultrasound Spectroscopy (RUS) elastic studies were taken for Tb6FeSb2 and Tb6FeBi2 as a function temperature from 5-300K, in various magnetic fields ranging from 0-9T. Tb6FeSb2’s and Tb6FeBi2’s …