Open Access. Powered by Scholars. Published by Universities.®

Education Commons

Open Access. Powered by Scholars. Published by Universities.®

Science and Mathematics Education

Selected Works

SelectedWorks

Space Mission Design

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Education

An Open Prototype For Educational Nanosats: Increasing National Space Engineering Productivity Via A Low-Cost Platform, Jeremy Straub Feb 2013

An Open Prototype For Educational Nanosats: Increasing National Space Engineering Productivity Via A Low-Cost Platform, Jeremy Straub

Jeremy Straub

The Open Prototype for Educational NanoSats (OPEN) is poised to allow a dramatic increase in the number of students, worldwide, that have the opportunity to participate in hands-on spacecraft development. It is designed to facilitate the formation of CubeSat development programs via providing a publically-available set of spacecraft design documents, implementation and testing plans. These documents should allow the creation of a 1-U CubeSat with a parts budget of approximately $ 5,000. This allows spacecraft development to be incorporated in regular curriculum and supported from teaching (as opposed to research) funds.


The Openorbiter Program: Intrepreneurship, Entrepreneurship And Innovation, Jeremy Straub Feb 2013

The Openorbiter Program: Intrepreneurship, Entrepreneurship And Innovation, Jeremy Straub

Jeremy Straub

The University of North Dakota’s OpenOrbiter program is providing an interdisciplinary learning experience for students from numerous STEM and non-STEM fields. OpenOrbiter allows student participants to experience not just the engineering and other technical aspects of the space program, it also involves students from diverse, non-STEM fields (including communications, entrepreneurship, management, visual arts, public policy and English). Traditional STEM fields such as mathematics, physics, electrical engineering, mechanical engineering, computer science and technology are also well represented. Students from specially programs at the University of North Dakota including atmospheric sciences, Earth System Sciences and Policy, aviation, Space Studies and Air Traffic …


The North Dakota Space Robotics Program: Teaching Spacecraft Development Skills To Students Statewide With High Altitude Ballooning, Jeremy Straub, Ronald Fevig Jun 2012

The North Dakota Space Robotics Program: Teaching Spacecraft Development Skills To Students Statewide With High Altitude Ballooning, Jeremy Straub, Ronald Fevig

Jeremy Straub

The University of North Dakota is serving as the lead institution in a statewide effort to develop student spacecraft engineering skills. This effort, which is part of the North Dakota Space Robotics Program (NDSRP), provides students the ability to participate in the design, development and fabrication of a small satellite analog that is launched by a high altitude balloon. The first iteration of the NDSRP Near-Spacecraft Project is generating a functional prototype of a remote sensing payload, which will perform onboard image processing. This project included undergraduate and graduate students from two institutions and five different academic departments. The students …


Formalizing Mission Analysis And Design Techniques For High Altitude Ballooning, Jeremy Straub, Ronald Fevig Jun 2012

Formalizing Mission Analysis And Design Techniques For High Altitude Ballooning, Jeremy Straub, Ronald Fevig

Jeremy Straub

High altitude balloon (HAB) missions can be and are used to teach concepts related to spacecraft and satellite design. A HAB mission, however, presents unique characteristics, which must be understood and respected to produce a desirable outcome. Because of this, flying an unaltered satellite design as a HAB payload would be as undesirable as utilizing an unaltered HAB design as a satellite. A well-defined process for HAB mission design is thus needed. The process presented mirrors commonly used space mission design processes to facilitate easy transition between the two. It is also comparatively simple, due to the smaller scale of …