Open Access. Powered by Scholars. Published by Universities.®

Art and Design Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Art and Design

Development And Characterization Of Nano Nickel-Based Conductive Inks For Flexographic Printing Of Electronics And New Interpretations Of Surface Energies Of Solids, Bilge N. Altay Nov 2018

Development And Characterization Of Nano Nickel-Based Conductive Inks For Flexographic Printing Of Electronics And New Interpretations Of Surface Energies Of Solids, Bilge N. Altay

Bilge Nazli Altay

Traditional printing technologies and conductive/functional inks have been integrated to print electronic devices and circuits on really think, lightweight and flexible materials in a time and cost-effective manner. Printing is an additive manufacturing technology, which selectively deposits materials only where needed to produce a wide range of devices including sensors, smart packaging, solar panels, batteries, light sources and wearable electronics. Therefore, it greatly reduces the number of required steps for manufacturing as well as the amount of waste generated relative to conventional electronic manufacturing. However, the process requirements and ink formulations to print electronics differ from graphic printing; therefore, the …


Impact Of Substrate And Process On The Electrical Performance Of Screen-Printed Nickel Electrodes: Fundamental Mechanism Of Ink Film Roughness, Bilge N. Altay, Jerome Jourdan, Vikram S. Turkani, Hervé Dietsch, Dinesh Maddipatla, Alexandra Pekarovicova, Paul D. Fleming, Massood Atashbar Nov 2018

Impact Of Substrate And Process On The Electrical Performance Of Screen-Printed Nickel Electrodes: Fundamental Mechanism Of Ink Film Roughness, Bilge N. Altay, Jerome Jourdan, Vikram S. Turkani, Hervé Dietsch, Dinesh Maddipatla, Alexandra Pekarovicova, Paul D. Fleming, Massood Atashbar

Bilge Nazli Altay

In recent years, traditional printing methods have been integrated to print flexible electronic devices and circuits. Since process requirements for electronics diff er from those for graphic printing, the fundamentals require rediscovery mainly to optimize manufacturing techniques and to find cost reduction methods without compromising functional performance. In addition, alternative inks need to be formulated to increase the variety of functional inks and to pioneer new product developments. In this report, we investigate a thermoplastic-based nickel ink prototype to print electrodes using a screen-printing process. Process fundamentals are explored, and cost reduction methods are addressed by studying …


Global Packaging Trends, Bekir Keskin, Bilge N. Altay, Merve Akyol, Guven Meral, Olgun Uyar, Paul D. Fleming Oct 2018

Global Packaging Trends, Bekir Keskin, Bilge N. Altay, Merve Akyol, Guven Meral, Olgun Uyar, Paul D. Fleming

Bilge Nazli Altay

The packaging sector is one of the massive traditional fields in the printing industry. The rapid developments in technology and environmental regulations have been affecting the expectations from packaging. User demands and the concerns to protect the environment are the two main factors that now demanding change in material properties. The choice used to depend on the physical and chemical requirements of the products, although today’s global mind set on the concepts such as biodegradability, recyclability, reusability, sustainability and carbon footprint reduction are becoming the reason to tailor packaging properties. In general, the choices have been switching from petroleum to …


Nickel Based Printed Resistance Temperature Detector On Flexible Polyimide Substrate, Vikram S. Turkani, Binu B. Narakatku, Dinesh Maddipatla, Bilge N. Altay, Paul D. Fleming, Bradley J. Bazuin, Massood Atashbar Dec 2017

Nickel Based Printed Resistance Temperature Detector On Flexible Polyimide Substrate, Vikram S. Turkani, Binu B. Narakatku, Dinesh Maddipatla, Bilge N. Altay, Paul D. Fleming, Bradley J. Bazuin, Massood Atashbar

Bilge Nazli Altay

A fully printed nickel (Ni) based resistance temperature detector (RTD) was successfully developed for temperature sensing applications in the automobile, agricultural and consumer electronic industries. The RTD was fabricated by
depositing nickel (Ni) ink on a flexible polyimide (PI) substrate using screen printing process. The capability of the printed RTD was demonstrated by measuring its resistive response for temperatures varying from -60 °C to 180 °C, in steps of 20 °C and its sensing characteristics such as linearity, sensitivity and repeatability were analyzed. The printed RTD demonstrated a linear response with resistive changes as high as 109% at 180 °C, …