Open Access. Powered by Scholars. Published by Universities.®

Architecture Commons

Open Access. Powered by Scholars. Published by Universities.®

2022

PDF

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Superabsorbent polymer

Articles 1 - 2 of 2

Full-Text Articles in Architecture

Synergistic Effect Of Shrinkage Mitigating Materials On Rheological Properties Of Flowable And Thixotropic Cement Paste, Kamran Aghaee, Ricarda Sposito, Kamal Khayat Oct 2022

Synergistic Effect Of Shrinkage Mitigating Materials On Rheological Properties Of Flowable And Thixotropic Cement Paste, Kamran Aghaee, Ricarda Sposito, Kamal Khayat

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

This study investigates the effect of individual and combined additions of CaO-based expansive agent (EA), shrinkage reducing admixture (SRA), and super absorbent polymer (SAP) on key characteristics of flowable cement paste mixtures proportioned with a water-to-cement ratio of 0.40. Of special interest is the effectiveness of these admixtures to mitigate shrinkage of cementitious materials for 3D printing. Static and dynamic yield stress, plastic and apparent viscosities, and thixotropy were evaluated at 20-min intervals up to 90 min. Compressive strength development and autogenous shrinkage were also determined. A factorial design approach was developed to evaluate the synergetic effects of the shrinkage …


Benefits And Drawbacks Of Using Multiple Shrinkage Mitigating Strategies On Performance Of Fiber-Reinforced Mortar, Kamran Aghaee, Kamal Khayat Oct 2022

Benefits And Drawbacks Of Using Multiple Shrinkage Mitigating Strategies On Performance Of Fiber-Reinforced Mortar, Kamran Aghaee, Kamal Khayat

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Shrinkage mitigating strategies have been successfully used to prevent concrete cracking. Numerous studies have demonstrated the efficiency of shrinkage mitigating materials (SMM), such as expansive agent (EA), shrinkage reducing admixture (SRA), and superabsorbent polymer (SAP) on reducing shrinkage and cracking; however, few studies have addressed the limitations of using these materials. In addition, the mechanism of negative effect on microstructure and mechanical properties when these materials are used at high contents or in combinations is not well defined. This study investigates the effect of CaO-based EA, SRA, and SAP on compressive strength development, fiber pull-out strength, and shrinkage of fiber-reinforced …