Open Access. Powered by Scholars. Published by Universities.®

Architecture Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Architectural Engineering

Missouri University of Science and Technology

Lightweight sand

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Architecture

Use Of Hybrid Fibers And Shrinkage Mitigating Materials In Scc For Repair Applications, Kamran Aghaee, Kamal H. Khayat Jan 2024

Use Of Hybrid Fibers And Shrinkage Mitigating Materials In Scc For Repair Applications, Kamran Aghaee, Kamal H. Khayat

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Self-consolidating concrete (SCC) is used to repair structural elements with congested reinforcement or restricted access to placement and consolidation. In addition to adequate flowability, passing ability, filling capacity, and stability, adequate bonding to the substrate and reinforcing bars, low shrinkage and cracking resistance are required for successful repair. This study employs various shrinkage mitigating materials, including expansive agent (EA), coupled use of EA with shrinkage reducing admixture (SRA), and EA with pre-saturated lightweight sand (LWS) to fulfill these requirements. The effect of these materials on the performance of SCC made with a hybrid synthetic (PP) fiber and a hybrid steel-synthetic …


Design And Performance Of Fiber-Reinforced Shrinkage Compensating Eco-Friendly Concrete, Kamran Aghaee, Kamal Khayat Dec 2023

Design And Performance Of Fiber-Reinforced Shrinkage Compensating Eco-Friendly Concrete, Kamran Aghaee, Kamal Khayat

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Eco-Crete is an ecological and economical concrete that benefits from high packing density of solid materials and reduced paste. Eco-Crete can enhance the service life of structures by reducing the risk of shrinkage cracking. In this study, shrinkage mitigating materials included an expansive agent (EA), a shrinkage reducing admixture (SRA), and a lightweight sand (LWS), as well as steel and synthetic fibers were used to minimize the risk of cracking. A total of 35 fiber-reinforced Eco-Crete mixtures were prepared with 350 kg/m3 of cementitious materials and 55 % substitution of fly ash and slag. Key fresh and mechanical properties in …


Effect Of Internal Curing And Shrinkage-Mitigating Materials On Microstructural Characteristics Of Fiber-Reinforced Mortar, Kamran Aghaee, Kamal Khayat Jul 2023

Effect Of Internal Curing And Shrinkage-Mitigating Materials On Microstructural Characteristics Of Fiber-Reinforced Mortar, Kamran Aghaee, Kamal Khayat

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Internal curing (IC) and other shrinkage mitigating materials are employed to reduce shrinkage and risk of cracking. This study investigates the efficiency of individual versus combined use of IC and shrinkage mitigating materials on key characteristics of fiber-reinforced mortar (FRM). The investigated mixtures include a 25% pre-saturated lightweight sand (LWS) that is added individually and combined with 10% CaO-based expansive agent (EA) and 2% shrinkage reducing admixture (SRA). This elucidates the synergistic effect of high content IC and EA/SRA on macro- and micro-mechanical characteristics of FRM, especially at the interface of the matrix with fibers. Mechanical properties, microstructural characteristics, and …


Use Of Saturated Lightweight Sand To Improve The Mechanical And Microstructural Properties Of Uhpc With Fiber Alignment, Huanghuang Huang, Le Teng, Xiaojian Gao, Kamal Khayat, Fazhou Wang, Zhichao Liu May 2022

Use Of Saturated Lightweight Sand To Improve The Mechanical And Microstructural Properties Of Uhpc With Fiber Alignment, Huanghuang Huang, Le Teng, Xiaojian Gao, Kamal Khayat, Fazhou Wang, Zhichao Liu

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

This paper studied the influence of pre-saturated lightweight sand (LWS) on the mechanical and microstructural properties of UHPC cast with steel fiber alignment. The changes in hydration kinetics, porosity, nano-mechanical, and mechanical properties were studied. The LWS was used at 0–50% replacement volumes of total sand. Predominant fiber alignment was favored through a flow-induced casting method during casting of flexural prisms. Experiment results showed that the 28-d autogenous shrinkage was decreased from 450 to 275 μm/m with the LWS content increasing from 0 to 50%. The addition of 20% LWS led to maximum increases of 15%, 15%, and 20% in …