Open Access. Powered by Scholars. Published by Universities.®

Architecture Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Architecture

Natural Gas Induced Vegetation Stress Identification And Discrimination From Hyperspectral Imaging For Pipeline Leakage Detection, Pengfei Ma, Ying Zhuo, Genda Chen, Joel G. Burken Mar 2024

Natural Gas Induced Vegetation Stress Identification And Discrimination From Hyperspectral Imaging For Pipeline Leakage Detection, Pengfei Ma, Ying Zhuo, Genda Chen, Joel G. Burken

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Remote Sensing Detection of Natural Gas Leaks Remains Challenging When using Ground Vegetation Stress to Detect Underground Pipeline Leaks. Other Natural Stressors May Co-Present and Complicate Gas Leak Detection. This Study Explores the Feasibility of Identifying and Distinguishing Gas-Induced Stress from Other Natural Stresses by Analyzing the Hyperspectral Reflectance of Vegetation. the Effectiveness of This Discrimination is Assessed Across Three Distinct Spectral Ranges (VNIR, SWIR, and Full Spectra). Greenhouse Experiments Subjected Three Plant Species to Controlled Environmental Stressors, Including Gas Leakage, Salinity Impact, Heavy-Metal Contamination, and Drought Exposure. Spectral Curves Obtained from the Experiments Underwent Preprocessing Techniques Such as Standard …


Characterization Of Alkali-Silica Reaction (Asr) Products And C-S-H Using Swir Spectroscopy For Nondestructive Detection Of Asr, Pengfei Ma, Wenyu Liao, Ying Zhuo, Hongyan Ma, Yanping Zhu, Genda Chen Feb 2024

Characterization Of Alkali-Silica Reaction (Asr) Products And C-S-H Using Swir Spectroscopy For Nondestructive Detection Of Asr, Pengfei Ma, Wenyu Liao, Ying Zhuo, Hongyan Ma, Yanping Zhu, Genda Chen

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

This study explores the feasibility of characterizing alkali-silica reaction (ASR) products and calcium silicate hydrates (C-S-H) from short-wave infrared (SWIR) spectroscopy. ASR products and C-S-H samples with different Ca/Si ratios were synthesized and analyzed through XRD, 29Si nuclei magnetic resonance (NMR) and SWIR spectroscopy. Fourier-transform infrared spectroscopy (FTIR) was collected to help interpret the results from the SWIR spectroscopy. The obtained spectroscopic features were applied to quantify the ASR product abundance denoted by the length expansion of mortar bars after an accelerated ASR test. The results show that the SWIR spectra of the synthetic ASR gels are similar regardless of …


Effect Of Type And Quantity Of Inherent Alkali Cations On Alkali-Silica Reaction, Pengfei Ma, Jiaoli Li, Jincheng Bai, Ying Zhuo, Lingyu Chi, Yanping Zhu, Zhenhua Shi, Hongyan Ma, Genda Chen Nov 2023

Effect Of Type And Quantity Of Inherent Alkali Cations On Alkali-Silica Reaction, Pengfei Ma, Jiaoli Li, Jincheng Bai, Ying Zhuo, Lingyu Chi, Yanping Zhu, Zhenhua Shi, Hongyan Ma, Genda Chen

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

In this study, the macroscopical expansion induced by alkali-silica reaction (ASR) and its corresponding ASR products are investigated using ordinary Portland cement (OPC) mortar specimens with a gradient of boosted alkalis. Experimental results show that the expansion increases with the concentration of inherent alkalis. Sodium-boosted samples expand approximately three times as much as potassium-boosted samples. ASR gels that are present in aggregate veins are calcium-free and amorphous; the atomic ratios of ASR gels are nearly independent of the type and quantity of alkali cations. Aggregate ASR gel exudation occurs in high (≥2.5 %) sodium cases and produces potential Na-shlykovite. Crystalline …


Machine Learning-Based Seismic Damage Assessment Of Residential Buildings Considering Multiple Earthquake And Structure Uncertainties, Xinzhe Yuan, Liujun Li, Haibin Zhang, Yanping Zhu, Genda Chen, Cihan H. Dagli Aug 2023

Machine Learning-Based Seismic Damage Assessment Of Residential Buildings Considering Multiple Earthquake And Structure Uncertainties, Xinzhe Yuan, Liujun Li, Haibin Zhang, Yanping Zhu, Genda Chen, Cihan H. Dagli

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Wood-frame structures are used in almost 90% of residential buildings in the United States. It is thus imperative to rapidly and accurately assess the damage of wood-frame structures in the wake of an earthquake event. This study aims to develop a machine-learning-based seismic classifier for a portfolio of 6,113 wood-frame structures near the New Madrid Seismic Zone (NMSZ) in which synthesized ground motions are adopted to characterize potential earthquakes. This seismic classifier, based on a multilayer perceptron (MLP), is compared with existing fragility curves developed for the same wood-frame buildings near the NMSZ. This comparative study indicates that the MLP …


Development And Characterization Of Coal-Based Thermoplastic Composite Material For Sustainable Construction, Haibin Zhang, Wenyu Liao, Genda Chen, Hongyan Ma Aug 2023

Development And Characterization Of Coal-Based Thermoplastic Composite Material For Sustainable Construction, Haibin Zhang, Wenyu Liao, Genda Chen, Hongyan Ma

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

The exploitation of coal and the disposal of waste plastic present significant environmental and economic challenges that require sustainable and profitable solutions. In response, we propose a renewable construction composite material of coal-based thermoplastic composite (CTC) that can be made from low-grade coal and plastic waste. We developed and tested the hot-press fabrication method for this CTC, using coal with a maximum particle size of 4.75 mm and recycled high-density polyethylene (HDPE). The effects of the coal fraction (50–80 wt.%) on compressive properties, thermal properties, microstructure, and ecological and economic efficiencies of the CTC were investigated. Test results revealed that …


A Spike-Shaped Anchorage For Steel Reinforced Polymer (Srp)-Strengthened Concrete Structures, Xingxing Zou, Keenan L. Mcburney, Lesley H. Sneed Jul 2023

A Spike-Shaped Anchorage For Steel Reinforced Polymer (Srp)-Strengthened Concrete Structures, Xingxing Zou, Keenan L. Mcburney, Lesley H. Sneed

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Steel reinforced polymer (SRP) composite has recently emerged as an effective and economical solution for strengthening of reinforced concrete (RC) structures. Premature debonding failure of unanchored SRP at low load levels generally governs the performance of RC structures strengthened with externally bonded SRP. Therefore, a novel yet simple spike-shaped anchorage system was proposed in this study to prevent the debonding failure of SRP and to improve the interfacial shear capacity. Experimental investigation through single-lap shear tests of SRP-concrete joints showed that the anchorage system changed the failure mode from composite debonding to fiber rupture. In addition, the anchorage system substantially …


Preliminary Bond Capacity Exploration Between Monolayer Graphene And Cementitious Composites, Yanping Zhu, Chuanrui Guo, Genda Chen Jun 2023

Preliminary Bond Capacity Exploration Between Monolayer Graphene And Cementitious Composites, Yanping Zhu, Chuanrui Guo, Genda Chen

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

This Study Aims to Explore Bond Capacity between Monolayer Graphene and Cementitious Composites for the First Time through a Pullout Test. the Low-Pressure Chemical Vapor Deposition Method Was Used to Synthesize Monolayer Graphene on the Copper Substrate to Be Embedded in the Mortar Made by the Briquette Mold. the Bond Capacity between Them Was Higher Than the Tensile Strength of the Copper Sheet with As-Grown Monolayer Graphene on the Surface Since All Specimens Failed in Fracture with Embedment Length of More Than 30 Mm. the Monolayer Graphene Enhanced the Copper Tensile Fracture Stress and Normalized Energy during the Test as …