Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Determination Of Near-Sol Carbon Impurity Content Due To Divertor Target Leakage Using Carbon-13 Tracers Via Methane Injection On The Diii-D Tokamak, Jonah David Duran Dec 2022

Determination Of Near-Sol Carbon Impurity Content Due To Divertor Target Leakage Using Carbon-13 Tracers Via Methane Injection On The Diii-D Tokamak, Jonah David Duran

Doctoral Dissertations

Experiments with outer strike point injection of isotopically enriched methane (13CD­4) in DIII-D L-mode discharges have demonstrated the ability to infer near scrape-off-layer (SOL) impurity density profiles based on: far-SOL collector probe (CP) measurements; a stable isotopic mixing model; and SOL impurity transport modelling. This work enables one of the first in-depth investigations on the source and transport of SOL impurities which could hinder performance of future fusion devices. Modelling by DIVIMP and 3DLIM of 13C SOL evolution is consistent with diagnostic observations and indicates that the buildup of injected impurities on plasma-facing surfaces must …


Multi-Objective Optimization Of The Fast Neutron Source By Machine Learning, John L. Pevey Dec 2022

Multi-Objective Optimization Of The Fast Neutron Source By Machine Learning, John L. Pevey

Doctoral Dissertations

The design and optimization of nuclear systems can be a difficult task, often with prohibitively large design spaces, as well as both competing and complex objectives and constraints. When faced with such an optimization, the task of designing an algorithm for this optimization falls to engineers who must apply engineering knowledge and experience to reduce the scope of the optimization to a manageable size. When sufficient computational resources are available, unsupervised optimization can be used.

The optimization of the Fast Neutron Source (FNS) at the University of Tennessee is presented as an example for the methodologies developed in this work. …


A Bulk Driven Transimpedance Cmos Amplifier For Sipm Based Detection, Shahram Hatefi Hesari Aug 2022

A Bulk Driven Transimpedance Cmos Amplifier For Sipm Based Detection, Shahram Hatefi Hesari

Masters Theses

The contribution of this work lies in the development of a bulk driven operational
transconducctance amplifier which can be integrated with other analog circuits and
photodetectors in the same chip for compactness, miniaturization and reducing the
power. Silicon photomultipliers, also known as SiPMs, when coupled with scintillator materials are used in many imaging applications including nuclear detection. This thesis discuss the design of a bulk-driven transimpedance amplifier suitable for detectors where the front end is a SiPM. The amplifier was design and fabricated in a standard standard CMOS process and is suitable for integration with CMOS based SiPMs and commercially …


Enigma - Ongoing Development Towards Novel Beta-Decay Spectroscopy Station At Isolde, Philipp Wagenknecht May 2022

Enigma - Ongoing Development Towards Novel Beta-Decay Spectroscopy Station At Isolde, Philipp Wagenknecht

Masters Theses

Beta decay and collinear laser spectroscopy are proven efficient tools to study nuclear structure far from stability. Two areas of significance are investigations into nuclear deformation and shape coexistence, as well as delayed neutron emissions used in nuclear energy applications. This contribution presents the ongoing development towards a novel beta-decay spectroscopy station for the VITO experiment at CERN’s radioactive ion beam facility ISOLDE. The setup will utilize both collinear laser spectroscopy and beta-decay spectroscopy to measure the energy and spin-parities of the ground and excited states of radioactive beams. Initial designs of the support structure, magnetic field, and detector array …


Design And Evaluation Of A Unique Weighted-Sum-Based Anger Camera, Matthew W. Seals May 2022

Design And Evaluation Of A Unique Weighted-Sum-Based Anger Camera, Matthew W. Seals

Masters Theses

Anger camera imaging technology has become widely popular for neutron diffraction imaging due to recent shortages in Helium-3 (He-3). Research into neutron diffraction optimized Anger camera by the Oak Ridge National Laboratory (ORNL) detectors group has provided an alternative to He-3 Tube-based detectors with a high-resolution Anger camera. However, the cost of these high-resolution Anger camera technology can make it less attractive than He-3 tubes when a large Field of View (FOV) is desired. Currently, there is a need for a lower-cost alternative to this high-resolution anger camera. Further applications for Anger camera have become of interest with the advent …