Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

NURBS

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 34

Full-Text Articles in Entire DC Network

Simulation And Experimental Research On Real-Time Nurbs Interpolator For Industrial Robot, Zhang Tie, Wentao Gong, Yanbiao Zou Jan 2019

Simulation And Experimental Research On Real-Time Nurbs Interpolator For Industrial Robot, Zhang Tie, Wentao Gong, Yanbiao Zou

Journal of System Simulation

Abstract: A real-time non uniform rational B-spline (NURBS) path interpolator with look-ahead algorithm for six-axis industrial robot is investigated. The algorithm consists of two modules: the global interpolation of the NURBS, and the look-ahead interpolator. The parametric equation of NURBS is built based on the parameter u and v, and the smooth NURBS curve is achieved from several teaching points. The velocity constraint equations are introduced initially based on chord error and centripetal acceleration, and the look-ahead velocity plan and the interpolator are investigated. The current strategy is compared with the trapezoidal acceleration and deceleration interpolator in a real-time controller …


A Point Cloud Approach To Object Slicing For 3d Printing, William Edward Oropallo Jr. Mar 2018

A Point Cloud Approach To Object Slicing For 3d Printing, William Edward Oropallo Jr.

USF Tampa Graduate Theses and Dissertations

Various industries have embraced 3D printing for manufacturing on-demand, custom printed parts. However, 3D printing requires intelligent data processing and algorithms to go from CAD model to machine instructions. One of the most crucial steps in the process is the slicing of the object. Most 3D printers build parts by accumulating material layers by layer. 3D printing software needs to calculate these layers for manufacturing by slicing a model and calculating the intersections. Finding exact solutions of intersections on the original model is mathematically complicated and computationally demanding. A preprocessing stage of tessellation has become the standard practice for slicing …


Deterministic And Random Isogeometric Analysis Of Fluid Flow In Unsaturated Soils, Shahriar Shahrokhabadi Dec 2017

Deterministic And Random Isogeometric Analysis Of Fluid Flow In Unsaturated Soils, Shahriar Shahrokhabadi

Theses and Dissertations

The main objective of this research is to use IGA as an efficient and robust alternative for numerical simulation of unsaturated seepage problems. Moreover, this research develops an IGA-based probabilistic framework that can properly account for the variability of soil hydraulic properties in the simulations. In the first part, IGA is used in a deterministic framework to solve a head-based form of Richards’ equation. It is shown that IGA is able to properly simulate changes in pore pressure at the soils interface. In the second part of this research, a new probabilistic framework, named random IGA (RIGA), is developed. A …


Development Of An Advanced Geometry Toolkit Framework For Fitting Complex Topology-Optimized Mesh Structures, Harshit Girishkumar Jani May 2017

Development Of An Advanced Geometry Toolkit Framework For Fitting Complex Topology-Optimized Mesh Structures, Harshit Girishkumar Jani

Mechanical and Aerospace Engineering Theses

Additive Manufacturing is playing a significant role in developing complex geometries which are not possible by conventional Manufacturing Processes. Topology optimization is playing key a role in deciding conceptual design for additive manufacturing. The output of topology optimization is rough and noisy surfaces. Fitting these surfaces poses challenging task to a designer as it is a tedious and a time-consuming process. The main aim of this research is to automate the process of smoothing noisy meshes. In this research work, I have developed algorithms in MATLAB to create NURBS (Non-Uniform B-Spline) surface patches from given a set of control points. …


Investigation Of Thermal-Hydraulic Characteristics Of Pillow Plate Heat Exchangers Using Cfd, Radia Eldeeb, Vikrant Aute, Reinhard Radermacher Jan 2016

Investigation Of Thermal-Hydraulic Characteristics Of Pillow Plate Heat Exchangers Using Cfd, Radia Eldeeb, Vikrant Aute, Reinhard Radermacher

International Refrigeration and Air Conditioning Conference

The compactness and desirable thermal characteristics of plate heat exchangers have made them a strong competing heat exchanger technology in the heating, ventilating, air conditioning and refrigeration industry. The miniaturization of plate heat exchangers has become a focal point of attention in recent research. It is desirable to utilize less material and refrigerant charge to obtain the same heat transfer performance. Pillow plate heat exchangers (PPHEs) consist of wavy plates that are welded together with a certain pattern using spot welding, sealed at the edges, and then inflated in a hydroforming process. The complex wavy structure of the pillow plates …


Wavy Fin Profile Optimization Using Nurbs For Air-To-Refrigerant Tube-Fin Heat Exchangers With Small Diameter Tubes, Daniel Bacellar, Vikrant Aute, Reinhard Radermacher Jan 2016

Wavy Fin Profile Optimization Using Nurbs For Air-To-Refrigerant Tube-Fin Heat Exchangers With Small Diameter Tubes, Daniel Bacellar, Vikrant Aute, Reinhard Radermacher

International Refrigeration and Air Conditioning Conference

The major limitation of any air-to-refrigerant HX is the air side thermal resistance which can account for 90%, or more, of the overall thermal resistance. For this reason the secondary heat transfer surfaces (fins) play a major role in these HX’s by providing additional surface area. Many researchers extensively investigate how to improve the performance of fins. The most common passive heat transfer augmentation method applied to fins uses surface discontinuity; providing an efficient disruption-reattachment mechanism of the boundary layer. Such approach is leveraged by louvers, slits and even vortex generators. In some applications, however, these concepts are not adequate …


New Hardware And Software Innovations (For Volumetric Modeling), A. Keith Turner Jun 2015

New Hardware And Software Innovations (For Volumetric Modeling), A. Keith Turner

Uncovering the Hidden Resource: Groundwater Law, Hydrology, and Policy in the 1990s (Summer Conference, June 15-17)

19 pages (includes illustrations and maps).


Modeling Stokes Flow Using Hierarchical Structure-Preserving B-Splines, Kendrick Monroe Shepherd Mar 2015

Modeling Stokes Flow Using Hierarchical Structure-Preserving B-Splines, Kendrick Monroe Shepherd

Theses and Dissertations

A new spline space, the hierarchical structure-preserving B-spline space, is introduced and implemented in the analysis of Stokes flow. The space, when properly constrained, is shown to be stable and to have at least optimal convergence rates in the velocity field and suboptimal convergence rates in the pressure field. However, results show that superoptimal convergence can often be expected in the pressure field, likely due to error reduction in the velocity field. Like other hierarchical spline spaces, these splines are shown to greatly increase accuracy and to drastically lower computation times for analyses on domains whose solution fields have singularities …


Structural Response Analyses Of Piezoelectric Composites Using Nurbs, Vijairaj Raj Sep 2014

Structural Response Analyses Of Piezoelectric Composites Using Nurbs, Vijairaj Raj

Electronic Thesis and Dissertation Repository

Variational method deduced on the basis of the minimum potential energy is an efficient method to find solutions for complex engineering problems. In structural mechanics, the potential energy comprises strain energy, kinetic energy and the work done by external actions. To obtain these, the displacement are required as a priori. This research is concerned with the development of a numerical method based on variational principles to analyze piezoelectric composite plates and solids. A Non-Uniform Rational B-Spline (NURBS) function is used for describing both the geometry and electromechanical displacement fields. Two dimensional plate models are formulated according to the first order …


Applications Of Isogeometric Analysis Coupled With Finite Volume Method, Carlos Pantaleón Jul 2014

Applications Of Isogeometric Analysis Coupled With Finite Volume Method, Carlos Pantaleón

Theses

In this thesis, a combination of Isogeometric Analysis (IGA) and Finite Volume Method (FVM) on geometries parameterized by Non-Uniform Rational Basis Splines (NURBS) is explored with applications in fluid flow, heat transfer, and shape optimization. An IGA framework supplemented with FVM is created in MATLAB® to solve problems defined over single patch domains with mesh refinement by node insertion. Additionally, a second-order finite difference method is developed using non-orthogonal curvilinear coordinates and a numerical Jacobian of the NURBS geometry. The examples include fully developed laminar flow through ducts, potential flow around a tilted ellipse, transient heat conduction, linear advection-diffusion, and …


Interpolating Beach Profile Data Using Linear And Non-Linear Functions, Lance Calloway Croft Jul 2014

Interpolating Beach Profile Data Using Linear And Non-Linear Functions, Lance Calloway Croft

USF Tampa Graduate Theses and Dissertations

ABSTRACT

Beach and nearshore surveys are conducted in a variety of ways, the most commonly used being the level-and-transit method; because it is inexpensive, time conducive and highly accurate. Specifically, beach surveys are conducted to better understand cross-shore, long-shore sediment transport processes, as well as to quantify volume changes, which are used to evaluate beach performance. In this study, a section of the beach on Sand Key, FL was surveyed using rod-and-transit. In addition to the commonly used linear data analysis, a non-linear analysis was conducted using NURBS (Non-Uniform Rational B-Splines).

Survey data was collected within a short time window …


An Investigation Of Nurbs-Based Deformable Image Registration, Travis J. Jacobson Jan 2014

An Investigation Of Nurbs-Based Deformable Image Registration, Travis J. Jacobson

Theses and Dissertations

Deformable image registration (DIR) is an essential tool in medical image processing. It provides a means to combine image datasets, allowing for intra-subject, inter-subject, multi-modality, and multi-instance analysis, as well as motion detection and compensation. One of the most popular DIR algorithms models the displacement vector field (DVF) as B-splines, a sum of piecewise polynomials with coefficients that enable local shape control. B-splines have many advantageous properties in the context of DIR, but they often struggle to adequately model steep local gradients and discontinuities. This dissertation addresses that limitation by proposing the replacement of conventional B-splines with a generalized formulation …


Application Of Machine Learning And Parametric Nurbs Geometry To Mode Shape Identification, Robert Mceuen Porter Oct 2013

Application Of Machine Learning And Parametric Nurbs Geometry To Mode Shape Identification, Robert Mceuen Porter

Theses and Dissertations

In any design, the dynamic characteristics of a part are dependent on its geometric and material properties. Identifying vibrational mode shapes within an iterative design process becomes difficult and time consuming due to frequently changing part definition. Although research has been done to improve the process, visual inspection of analysis results is still the current means of identifying each vibrational mode determined by a modal analysis. This research investigates the automation of the mode shape identification process through the use of parametric geometry and machine learning.In the developed method, displacement results from finite element modal analysis are used to create …


Blended Isogeometric Shells, D. J. Benson, S. Hartmann, Y. Bazilevs, Ming-Chen Hsu, T.J.R. Hughes Mar 2013

Blended Isogeometric Shells, D. J. Benson, S. Hartmann, Y. Bazilevs, Ming-Chen Hsu, T.J.R. Hughes

Ming-Chen Hsu

We propose a new isogeometric shell formulation that blends Kirchhoff–Love theory with Reissner–Mindlin theory. This enables us to reduce the size of equation systems by eliminating rotational degrees of freedom while simultaneously providing a general and effective treatment of kinematic constraints engendered by shell intersections, folds, boundary conditions, the merging of NURBS patches, etc. We illustrate the blended theory’s performance on a series of test problems.


Isogeometric Fluid–Structure Interaction Analysis With Emphasis On Non-Matching Discretizations, And With Application To Wind Turbines, Y. Bazilevs, Ming-Chen Hsu, M. A. Scott Dec 2012

Isogeometric Fluid–Structure Interaction Analysis With Emphasis On Non-Matching Discretizations, And With Application To Wind Turbines, Y. Bazilevs, Ming-Chen Hsu, M. A. Scott

Ming-Chen Hsu

In this paper we develop a framework for fluid–structure interaction (FSI) modeling and simulation with emphasis on isogeometric analysis (IGA) and non-matching fluid–structure interface discretizations. We take the augmented Lagrangian approach to FSI as a point of departure. Here the Lagrange multiplier field is defined on the fluid–structure interface and is responsible for coupling of the two subsystems. Thus the FSI formulation does not rely on the continuity of the underlying function spaces across the fluid–structure interface in order to produce the correct coupling conditions between the fluid and structural subdomains. However, in deriving the final FSI formulation the interface …


Ale-Vms And St-Vms Methods For Computer Modeling Of Wind-Turbine Rotor Aerodynamics And Fluid–Structure Interaction, Yuri Bazilevs, Ming-Chen Hsu, Kenji Takizawa, Tayfun E. Tezduyar Jul 2012

Ale-Vms And St-Vms Methods For Computer Modeling Of Wind-Turbine Rotor Aerodynamics And Fluid–Structure Interaction, Yuri Bazilevs, Ming-Chen Hsu, Kenji Takizawa, Tayfun E. Tezduyar

Ming-Chen Hsu

We provide an overview of the Arbitrary Lagrangian–Eulerian Variational Multiscale (ALE-VMS) and Space–Time Variational Multiscale (ST-VMS) methods we have developed for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction (FSI). The related techniques described include weak enforcement of the essential boundary conditions, Kirchhoff–Love shell modeling of the rotor-blade structure, NURBS-based isogeometric analysis, and full FSI coupling. We present results from application of these methods to computer modeling of NREL 5MW and NREL Phase VI wind-turbine rotors at full scale, including comparison with experimental data.


Application Of Parametric Nurbs Geometry To Mode Shape Identification And The Modal Assurance Criterion, Evan D. Selin Apr 2012

Application Of Parametric Nurbs Geometry To Mode Shape Identification And The Modal Assurance Criterion, Evan D. Selin

Theses and Dissertations

The dynamic characteristics of a part are highly dependent on geometric and material properties of the part. The identification and tracking of vibrational mode shapes within an iterative design process becomes difficult and time consuming due to the frequently changing part definition. Currently, visual inspection of analysis results is used as the means to identify the shape of each vibrational mode determined by the modal analysis. This thesis investigates the automation of the mode shape identification process through the use of parametric geometry and the Modal Assurance Criterion. Displacement results from finite element modal analysis are used to create parametric …


3d Simulation Of Wind Turbine Rotors At Full Scale. Part Ii: Fluid–Structure Interaction Modeling With Composite Blades, Y. Bazilevs, Ming-Chen Hsu, J. Kiendel, R. Wuchner, K. U. Bletzigner Oct 2011

3d Simulation Of Wind Turbine Rotors At Full Scale. Part Ii: Fluid–Structure Interaction Modeling With Composite Blades, Y. Bazilevs, Ming-Chen Hsu, J. Kiendel, R. Wuchner, K. U. Bletzigner

Ming-Chen Hsu

In this two-part paper, we present a collection of numerical methods combined into a single framework, which has the potential for a successful application to wind turbine rotor modeling and simulation. In Part 1 of this paper we focus on: 1. The basics of geometry modeling and analysis-suitable geometry construction for wind turbine rotors; 2. The fluid mechanics formulation and its suitability and accuracy for rotating turbulent flows; 3. The coupling of air flow and a rotating rigid body. In Part 2, we focus on the structural discretization for wind turbine blades and the details of the fluid–structure interaction computational …


High-Performance Computing Of Wind Turbine Aerodynamics Using Isogeometric Analysis, Ming-Chen Hsu, Ido Akkerman, Yuri Bazilevs Oct 2011

High-Performance Computing Of Wind Turbine Aerodynamics Using Isogeometric Analysis, Ming-Chen Hsu, Ido Akkerman, Yuri Bazilevs

Ming-Chen Hsu

In this article we present a high-performance computing framework for advanced flow simulation and its application to wind energy based on the residual-based variational multiscale (RBVMS) method and isogeometric analysis. The RBVMS formulation and its suitability and accuracy for turbulent flow in a moving domain are presented. Particular emphasis is placed on the parallel implementation of the methodology and its scalability. Two challenging flow cases were considered: the turbulent Taylor–Couette flow and the NREL 5 MW offshore baseline wind turbine rotor at full scale. In both cases, flow quantities of interest from the simulation results compare favorably with the reference …


A Large Deformation, Rotation-Free, Isogeometric Shell, D. J. Benson, Y. Bazilevs, Ming-Chen Hsu, T. J. R. Hughes Mar 2011

A Large Deformation, Rotation-Free, Isogeometric Shell, D. J. Benson, Y. Bazilevs, Ming-Chen Hsu, T. J. R. Hughes

Ming-Chen Hsu

Conventional finite shell element formulations use rotational degrees of freedom to describe the motion of the fiber in the Reissner–Mindlin shear deformable shell theory, resulting in an element with five or six degrees of freedom per node. These additional degrees of freedom are frequently the source of convergence difficulties in implicit structural analyses, and, unless the rotational inertias are scaled, control the time step size in explicit analyses. Structural formulations that are based on only the translational degrees of freedom are therefore attractive. Although rotation-free formulations using C0 basis functions are possible, they are complicated in comparison to their C1 …


3d Simulation Of Wind Turbine Rotors At Full Scale. Part I: Geometry Modeling And Aerodynamics, Y. Bazilevs, Ming-Chen Hsu, I. Akkerman, S. Wright, K. Takizawa, B. Henicke, T. Spielman, T. E. Tezduyar Jan 2011

3d Simulation Of Wind Turbine Rotors At Full Scale. Part I: Geometry Modeling And Aerodynamics, Y. Bazilevs, Ming-Chen Hsu, I. Akkerman, S. Wright, K. Takizawa, B. Henicke, T. Spielman, T. E. Tezduyar

Ming-Chen Hsu

In this two-part paper we present a collection of numerical methods combined into a single framework, which has the potential for a successful application to wind turbine rotor modeling and simulation. In Part 1 of this paper we focus on: 1. The basics of geometry modeling and analysis-suitable geometry construction for wind turbine rotors; 2. The fluid mechanics formulation and its suitability and accuracy for rotating turbulent flows; 3. The coupling of air flow and a rotating rigid body. In Part 2 we focus on the structural discretization for wind turbine blades and the details of the fluid–structure interaction computational …


A Generalized Finite Element Formulation For Arbitrary Basis Functions: From Isogeometric Analysis To Xfem, D. J. Benson, Y. Bazilevs, E. Deluycker, Ming-Chen Hsu, M. Scott, T. J. R. Hughes, T. Belytschko Aug 2010

A Generalized Finite Element Formulation For Arbitrary Basis Functions: From Isogeometric Analysis To Xfem, D. J. Benson, Y. Bazilevs, E. Deluycker, Ming-Chen Hsu, M. Scott, T. J. R. Hughes, T. Belytschko

Ming-Chen Hsu

Many of the formulations of current research interest, including iosogeometric methods and the extended finite element method, use nontraditional basis functions. Some, such as subdivision surfaces, may not have convenient analytical representations. The concept of an element, if appropriate at all, no longer coincides with the traditional definition. Developing a new software for each new class of basis functions is a large research burden, especially, if the problems involve large deformations, non-linear materials, and contact. The objective of this paper is to present a method that separates as much as possible the generation and evaluation of the basis functions from …


Isogeometric Shell Analysis: The Reissner–Mindlin Shell, D. J. Benson, Y. Bazilevs, Ming-Chen Hsu, T.J.R. Hughes Jan 2010

Isogeometric Shell Analysis: The Reissner–Mindlin Shell, D. J. Benson, Y. Bazilevs, Ming-Chen Hsu, T.J.R. Hughes

Ming-Chen Hsu

A Reissner–Mindlin shell formulation based on a degenerated solid is implemented for NURBS-based isogeometric analysis. The performance of the approach is examined on a set of linear elastic and nonlinear elasto-plastic benchmark examples. The analyses were performed with LS-DYNA, an industrial, general-purpose finite element code, for which a user-defined shell element capability was implemented. This new feature, to be reported on in subsequent work, allows for the use of NURBS and other non-standard discretizations in a sophisticated nonlinear analysis framework.


Isogeometric Finite Element Analysis Using T-Splines, Jingang Li Aug 2009

Isogeometric Finite Element Analysis Using T-Splines, Jingang Li

Theses and Dissertations

Non-uniform rational B-splines (NURBS) methodology is presented, on which the isogeometric analysis is based. T-splines are also introduced as a surface design methodology, which are a generalization of NURBS and permit local refinement. Isogeometric analysis using NURBS and T-splines are applied separately to a structural mechanics problem. The results are compared with the closed-form solution. The desirable performance of isogeometric analysis using T-splines on engineering analysis is demonstrated.


B-Spline Boundary Element Method For Ships, Aditya Mohan Aggarwal Aug 2008

B-Spline Boundary Element Method For Ships, Aditya Mohan Aggarwal

University of New Orleans Theses and Dissertations

The development of a three dimensional B-Spline based method, which is suitable for the steady-state potential flow analysis of free surface piercing bodies in hydrodynamics, is presented. The method requires the B-Spline or Non Uniform Rational B-Spline (NURBS) representation of the body as an input. In order to solve for the unknown potential, the source surface, both for the body as well as the free surface, is represented by NURBS surfaces. The method does not require the body surface to be discritized into flat panels. Therefore, instead of a mere panel approximation, the exact body geometry is utilized for the …


Watertight Trimmed Nurbs, Thomas W. Sederberg, Xin Li, Hongwei Lin, Heather Ipson Aug 2008

Watertight Trimmed Nurbs, Thomas W. Sederberg, Xin Li, Hongwei Lin, Heather Ipson

Faculty Publications

This paper addresses the long-standing problem of the unavoidable gaps that arise when expressing the intersection of two NURBS surfaces using conventional trimmed-NURBS representation. The solution converts each trimmed NURBS into an untrimmed T-Spline, and then merges the untrimmed T-Splines into a single, watertight model. The solution enables watertight fillets of NURBS models, as well as arbitrary feature curves that do not have to follow isoparameter curves. The resulting T-Spline representation can be exported without error as a collection of NURBS surfaces.


Arbitrary Degree T-Splines, Gordon Thomas Finnigan Jul 2008

Arbitrary Degree T-Splines, Gordon Thomas Finnigan

Theses and Dissertations

T-Splines is a freeform surface type similar to NURBS, that allows partial rows of control points. Up until now, T-Splines have only been formally defined for the degree three case. This paper extends the definition to support all odd, even, and mixed degree T-Spline surfaces, making T-Splines a proper superset of all standard NURBS surfaces.


Reducing Curvature In Complex Tool Paths By Deviating From Cam-Produced Tool Paths Within A Tolerance Band, George Benjamin Naseath Dec 2007

Reducing Curvature In Complex Tool Paths By Deviating From Cam-Produced Tool Paths Within A Tolerance Band, George Benjamin Naseath

Theses and Dissertations

This thesis develops an algorithm to decrease high-curvature sections in tool paths for complex parts to achieve shorter machining times resulting in higher production rates. In the research sample cases, the algorithm decreased machining times by 1% to 9% for design-induced sections of high curvature and by 16% to 75% for CAM induced ripples using high path tolerances. High-curvature sections in tool paths are caused by complex part geometry, noise, and discontinuities in the model. The curvature is decreased by deviating the tool path within an allowable path tolerance. The feedrate along the tool path is directly related to the …


A Geometry-Based Motion Planner For Direct Machining And Control, Robert M. Cheatham Jul 2007

A Geometry-Based Motion Planner For Direct Machining And Control, Robert M. Cheatham

Theses and Dissertations

Direct Machining And Control (DMAC) is a new method of controlling machine tools directly from process planning software. A motion planning module is developed for the DMAC system that operates directly off path geometry without pre-tessellation. The motion planner is developed with the intent to process Bezier curves. The motion planning module includes a deterministic predictor-corrector-type curve interpolator, a dynamics limiting module, and a two-pass jerk-limited speed profiling algorithm. The methods are verified by machining an automotive surface in a clay medium and evaluating the resultant machine dynamics, feed rate, and chordal error throughout the machining process.


T-Spline Simplification, David L. Cardon Apr 2007

T-Spline Simplification, David L. Cardon

Theses and Dissertations

This work focuses on generating approximations of complex T-spline surfaces with similar but less complex T-splines. Two approaches to simplifying T-splines are proposed: a bottom-up approach that iteratively refines an over-simple T-spline to approximate a complex one, and a top-down approach that evaluates existing control points for removal in producing an approximations. This thesis develops and compares the two simplification methods, determining the simplification tasks to which each is best suited. In addition, this thesis documents supporting developments made to T-spline research as simplification was developed.