Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Green Catalyst For Clean Fuel Production Via Hydrodeoxygenation, Selva Bi̇lge Yücel, Yusuf Osman Donar, Samed Ergenekon, Beyza Özoylumlu, Ali̇ Sinağ Oct 2023

Green Catalyst For Clean Fuel Production Via Hydrodeoxygenation, Selva Bi̇lge Yücel, Yusuf Osman Donar, Samed Ergenekon, Beyza Özoylumlu, Ali̇ Sinağ

Turkish Journal of Chemistry

The development of new fuel sources to replace nonrenewable fossil fuels has received substantial attention due to the ongoing demand for fossil fuels. Biomass and raw waste materials are crucial sources to produce suitable alternative fuels instead of nonrenewable fuels and offer a greener approach. Therefore, improving the fuel properties of biooils produced from the thermochemical conversion of biomass and raw waste materials is critical as it is used as an alternative to nonrenewable fuel. Developing an economical and eco-friendly method to produce sustainable and renewable oil by improving biooil containing large amounts of phenolic compounds has become imperative. One …


Co2 Participation In Cross-Linking Reactions And Char Formation During Bio-Oil Pyrolysis, Farid Chejne, Javier Alonso Ordoñez, Carlos F. Valdes Jun 2019

Co2 Participation In Cross-Linking Reactions And Char Formation During Bio-Oil Pyrolysis, Farid Chejne, Javier Alonso Ordoñez, Carlos F. Valdes

Pyroliq 2019: Pyrolysis and Liquefaction of Biomass and Wastes

The integration of new CO2 capture and storage technologies into energy generation processes has led to the development and study of the oxy-fuel combustion, in which the nitrogen in the air is replaced by recirculated CO2 that facilitates its capture and storage to reduce polluting emissions. Currently, the integration of oxy-fuel technologies with the use of new fuels such as bio-oil obtained from the pyrolysis of biomass is a topic of interest. In this case, the CO2 content surrounding the bio-oil droplets modifies the pyrolysis mechanism due to barriers in the diffusion of light volatiles at low temperatures (less than …