Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Measurement Of Electron Spin Transport In Graphene On 6h-Silicon Carbide(0001), Joseph Abel Jan 2012

Measurement Of Electron Spin Transport In Graphene On 6h-Silicon Carbide(0001), Joseph Abel

Legacy Theses & Dissertations (2009 - 2024)

The focus of this thesis is to demonstrate the potential of wafer scale graphene spintronics. Graphene is a single atomic layer of sp2-bonded carbon atoms that has high carrier mobilities, making it a desirable material for future nanoscale electronic devices. The vision of spintronics is to utilize the spin of the electron to produce novel high-speed low power consuming devices. Materials with long spin relaxation times and spin diffusion lengths are needed to realize these goals. Graphene is an ideal material as it meets these requirements and is amenable to planar device geometries.


Structural And Thermodynamic Anaylsis Of Self-Assembled Dna Cross-Tiles, Lauren Hakker Jan 2012

Structural And Thermodynamic Anaylsis Of Self-Assembled Dna Cross-Tiles, Lauren Hakker

Legacy Theses & Dissertations (2009 - 2024)

A thermodynamic and structural analysis of DNA nanostructures was performed, following the replacement of the unpaired thymine bases within a central loop to determine their effect on the self-assembly process. Specifically this study focused on DNA cross-tile nanostructures. Self-assembly of DNA cross-tiles occurs by means of Watson-crick base-pairing interactions between designed single-stranded DNAs from which lattice structures assemble through sticky-end cohesion. These cross-tile structures were constructed from nine single-stranded DNAs and consisted of a central loop containing 16 unpaired thymine bases, four shell strands, and four arms. Modifications were introduced to replace the central unpaired thymine base loop. The modifications …


The Influence Of Copper Substrate Orientation On Graphene Growth, Zachary Robert Robinson Jan 2012

The Influence Of Copper Substrate Orientation On Graphene Growth, Zachary Robert Robinson

Legacy Theses & Dissertations (2009 - 2024)

This dissertation is focused on determining the influence of the copper substrate on graphene grown by \ac{CVD}. Graphene, which can be grown in single atomic layers on copper substrates, has potential applications in future electronic devices. One of the key issues for the use of graphene grown by chemical vapor deposition for device applications is the influence of defects on the transport properties of the graphene. For instance, growth on metal foil substrates results in multi-domain graphene growth because the foil substrates themselves have a variety of different surface terminations. Therefore, they don't serve as a very good template for …


Modified Statistical Dynamical Diffraction Theory : A Novel Metrological Analysis Method For Partially Relaxed And Defective C Doped Si And Sige Heterostructures, Paul Kenneth Shreeman Jan 2012

Modified Statistical Dynamical Diffraction Theory : A Novel Metrological Analysis Method For Partially Relaxed And Defective C Doped Si And Sige Heterostructures, Paul Kenneth Shreeman

Legacy Theses & Dissertations (2009 - 2024)

The statistical dynamical diffraction theory, which has been initially developed by late Kato remained in obscurity for many years due to intense and difficult mathematical treatment that proved to be quite challenging to implement and apply. With assistance of many authors in past (including Bushuev, Pavlov, Pungeov, and among the others), it became possible to implement this unique x-ray diffraction theory that combines the kinematical (ideally imperfect) and dynamical (the characteristically perfect diffraction) into a single system of equations controlled by two factors determined by long range order and correlation function within the structure. The first stage is completed by …


Graphene-Based Post-Cmos Architecture, Sansiri Tanachutiwat Jan 2012

Graphene-Based Post-Cmos Architecture, Sansiri Tanachutiwat

Legacy Theses & Dissertations (2009 - 2024)

The semiconductor industry relies on CMOS technology which is nearing its scaling limitations. In order to continue the historical growth rate of the device density of digital logic chips, novel nanomaterials and nanodevices will need to be developed.