Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

MEMS

Theses/Dissertations

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 189

Full-Text Articles in Entire DC Network

A Mems Planar Fresnel Lens For Cmut Array, Shivani Nilesh Upadhyay Jan 2024

A Mems Planar Fresnel Lens For Cmut Array, Shivani Nilesh Upadhyay

Electronic Theses and Dissertations

This thesis presents a Microelectromechanical Systems (MEMS) planar Fresnel lens for use with a Capacitive Micromachined Ultrasonic Transducer (CMUT) array for high-resolution cardiac diagnostic imaging applications. The research exploited the excellent sound propagation and thermal properties of cross-linked silica aerogel, a nano-porous, nano-networked ultra-light-weight material, to design a planar thinfilm lens that can be easily microfabricated or integrated with a CMUT array. The designed lens, comprised of 32 various width concentric rings, was optimized to operate with a 256 element 6 MHz CMUT array. The 4 µm thick lens was designed to generate a 1.9 mm focal spot at a …


Benefits Of Quadratically Tapered Flexures For Mems Resonators And Gyroscopes, Brian Grantham Jan 2024

Benefits Of Quadratically Tapered Flexures For Mems Resonators And Gyroscopes, Brian Grantham

Dissertations

An investigation into the benefits of quadratically tapered flexures for MEMS resonators and gyroscopes is performed and compared to the traditional non-tapered flexure design. Quadratically tapered flexures exhibit constant strain along the outer edge of the flexure whereas non-tapered flexures have significant stress concentration near the base of the flexure. The investigation considers peak stress, thermoelastic damping (TED), nonlinearity, and sensitivity to manufacturing variations. The impact of inside corner fillets on peak stress, TED, and resonant frequency is also investigated. Five new anti-phase lever mechanism (APLM) configurations for resonators and gyroscopes are designed and analyzed using CoventorWare 10. Fabrication experiment …


Investigating Mems Devices In Flow Conditions Relevant To Flow-Through Systems., Mohammad Shafquatul Islam Dec 2023

Investigating Mems Devices In Flow Conditions Relevant To Flow-Through Systems., Mohammad Shafquatul Islam

Electronic Theses and Dissertations

Advancements in microscale actuating technologies has substantially expanded the possibilities of interacting with the surrounding environment. Microstructures that deflect in response to mechanical forces are one of the largest application areas of microelectromechanical systems (MEMS). MEMS devices, functioning as sensors, actuators, and support structures, find applications in inertial sensors, pressure sensors, chemical sensors, and robotics, among others. Driven by the critical role of catalytic membrane reactors, this dissertation aims to evaluate enzyme activity on polymeric membranes and explore how fabrication methods from the field of Electrical and Computer Engineering (ECE) can incorporate sensing and actuation into these porous surfaces. Toward …


The Effect Of Heating Area And Wheatstone Bridge Materials On A Thermally Actuated Mems Viscosity Sensor, Connor Michael Levine Jul 2023

The Effect Of Heating Area And Wheatstone Bridge Materials On A Thermally Actuated Mems Viscosity Sensor, Connor Michael Levine

Theses

Being able to accurately measure oil viscosity in real time is critical for multiple applications. It can ensure that the oil being used to protect and lubricate gears and other mechanical elements is good. To do this a thermally actuated micro electromechanical systems (MEMS) based sensor has been previously developed. The sensor is able to measure viscosity by having the fluid couple with the oscillating diaphragm and monitoring the frequency, amplitude and quality factor of the waveform. To improve the accuracy of the sensor, 5 different versions were created to study the effects of heating area and the sensing material …


Modeling, Simulation And Control Of Microrobots For The Microfactory., Zhong Yang May 2023

Modeling, Simulation And Control Of Microrobots For The Microfactory., Zhong Yang

Electronic Theses and Dissertations

Future assembly technologies will involve higher levels of automation in order to satisfy increased microscale or nanoscale precision requirements. Traditionally, assembly using a top-down robotic approach has been well-studied and applied to the microelectronics and MEMS industries, but less so in nanotechnology. With the boom of nanotechnology since the 1990s, newly designed products with new materials, coatings, and nanoparticles are gradually entering everyone’s lives, while the industry has grown into a billion-dollar volume worldwide. Traditionally, nanotechnology products are assembled using bottom-up methods, such as self-assembly, rather than top-down robotic assembly. This is due to considerations of volume handling of large …


Planar Element Alignment System, Benjamin E. Lavigna, Benny F. Cruz, Samuel Gierhan, Jacob Q. Henriksen Mar 2023

Planar Element Alignment System, Benjamin E. Lavigna, Benny F. Cruz, Samuel Gierhan, Jacob Q. Henriksen

Mechanical Engineering

Precise alignment to the micron level is a necessity for microfluidic/micromechanical devices to function as designed. Because of this, a micro-alignment device was commissioned by Professor Hans Mayer on behalf of the Cal Poly Microfluidics Laboratory. Prototype creation was bounded by a set of requirements including, ability to align PDMS & Silicon wafer halves to ± 10 microns, total process speed of three minutes, and total budget of $3000. Some major design hurdles included an ability to verify alignment, possible non-planar alignment pieces, and an inability to contact any point on the face of the alignment pieces after bonding treatment. …


Designing A Flexible Framework For Developing Acoustic Array Systems, Charles Fulton Gilliland Jan 2023

Designing A Flexible Framework For Developing Acoustic Array Systems, Charles Fulton Gilliland

Electronic Theses and Dissertations

In recent years, research conducted by the Applied Acoustics group at the NationalCenter for Physical Acoustics has involved the use of microphone arrays to study the propagation of sound through outdoor environments. In such research, there is need for data acquisition systems which can be reconfigured in both hardware and software. This work is an effort to develop a modular acoustic data acquisition framework which can be configured to accommodate a wide variety of acoustic array applications. In hardware, the framework provides modularity with a generic mainboard which uses a common interface to collect data from application-specific microphone boards. In …


Hyper-Sensitive Mems Pressure Sensor Array For Microscale Bubble Pressure Measurement, Yash Rajan Rasaikar Aug 2022

Hyper-Sensitive Mems Pressure Sensor Array For Microscale Bubble Pressure Measurement, Yash Rajan Rasaikar

Theses

As technology is advancing, more complex, efficient, and powerful devices are being made. These powerful devices generate a lot of heat which needs to be taken out to maximize their performance. Hence, efforts are being made to improve cooling techniques for these devices. Boiling is one such technique used in the cooling of devices. The heat transfer performance in the flow boiling systems is higher than that in pool boiling systems. With a simple add-on tapered manifold over a plain surface, we can convert pool boiling to flow boiling. This study will lead to improved performance and reliability of microelectronic …


Novel Test Fixture For Characterizing Mems Switch Microcontact Reliability And Performance, Protap Kumar Mahanta Jul 2022

Novel Test Fixture For Characterizing Mems Switch Microcontact Reliability And Performance, Protap Kumar Mahanta

Dissertations (1934 -)

Microelectromechanical systems (MEMS) switch is considered as a better alternative than the conventional solid-state DC and RF switches due to their low contact resistance approximately 1 Ω, near-zero power consumption approximately 0 W, low insertion loss approximately 0.2 dB, and high isolation approximately -30 dB. However, reliability is a great concern for them to be ubiquitously used by the industry for specific applications. Switching dynamics and microcontact surface physics play the critical role in determining their reliability. A simple, quick, and efficient test fixture is required to study the contact surface physics as well as to optimize the switching dynamics.In …


Surface-Functionalized Chemiresistive Films That Exploit H-Bonding, Cation-Pi, And Metal-Halide Interactions., Prasadanie Karunarathna Adhihetty May 2022

Surface-Functionalized Chemiresistive Films That Exploit H-Bonding, Cation-Pi, And Metal-Halide Interactions., Prasadanie Karunarathna Adhihetty

Electronic Theses and Dissertations

The development of gas sensors for detection of volatile organic compounds (VOCs) has been of interest in the sensing field for decades. To date, the use of metal nanoparticle-based chemiresistors for trace VOC detection, particularly gold nanoparticle-based sensors, is of great interest due to their high chemical stability, ease of synthesis, unique optical properties, large surface to volume ratio, and high level of conductivity. Much effort has been devoted towards gold monolayer protected clusters (Au MPCs) as chemiresistors to detect harmful VOCs. The present thesis documents the results of our efforts to exploit the advantages of functionalized Au MPCs chemiresistors …


Nonlinear Dynamics Of A Class Of Ring-Based Angular Rate Sensing And Energy Harvesting Systems, Ibrahim F Abdelhamid Gebrel Aug 2021

Nonlinear Dynamics Of A Class Of Ring-Based Angular Rate Sensing And Energy Harvesting Systems, Ibrahim F Abdelhamid Gebrel

Electronic Thesis and Dissertation Repository

This research is classified into two broad sections: ring-based MEMS (Micro-electro Mechanical Systems) and macro gyroscopes and novel bi-stable/monostable nonlinear energy harvesting systems. In both cases, models and solution methods are based on ring structural dynamics considering comprehensive nonlinear formulations. The investigation of nonlinear and linear dynamic response behavior of MEMS and macro ring gyroscopes forms the basis of the first study. This class of MEMS/macro ring-based vibratory gyroscopes requires oscillatory nonlinear electrostatic/electromagnetic excitation forces for their operation. The partial differential equations that govern the ring dynamics are reduced to a set of coupled nonlinear ordinary differential equations by assuming …


Design Of A Regulated Micromachined Air-Sniffer Using Thermal Transpiration Effect For E-Nose Applications, Mukesh Arvind Raju Jun 2021

Design Of A Regulated Micromachined Air-Sniffer Using Thermal Transpiration Effect For E-Nose Applications, Mukesh Arvind Raju

Electronic Theses and Dissertations

Microfluidics artificial olfaction systems are used for plant disease diagnosis in the agricultural field. In an electronic nose, the sniffer draws the air towards an array of gas sensors that detect volatile organic compounds corresponding to diseased plants. The currently available electronic noses involve a mechanical pump of moving parts prone to friction losses, limiting large-scale application. In this work, a microchannel that works on thermal transpiration principle to control the airflow inside it is proposed and designed. It has the potential to be employed as a sniffer component for electronic noses, designed using microelectromechanical systems. COMSOL Multiphysics simulation software …


Feasibility Study Of Radio Frequency Microelectromechanical Filters For Space Operation, Karanvir Singh Jun 2021

Feasibility Study Of Radio Frequency Microelectromechanical Filters For Space Operation, Karanvir Singh

Theses and Dissertations

Piezoelectric contour mode resonator technology has the unique advantage of combining low motional resistance with the ability to define multiple frequencies on the same substrate. Contour mode resonators can be mechanically coupled together to form robust band-pass filters for the next generation of GPS satellites with extreme size reduction compared to electrically coupled filters. Piezoelectric zinc oxide (ZnO) contour mode resonators have the potential for monolithic integration with current ZnO transistor further reducing size, power consumption, and cost of filter modules. Barium strontium titanate (BST) contour mode resonators have incredible frequency tunability due to the fundamental nature of the thin …


Development Of Novel Compound Controllers To Reduce Chattering Of Sliding Mode Control, Mehran Rahmani May 2021

Development Of Novel Compound Controllers To Reduce Chattering Of Sliding Mode Control, Mehran Rahmani

Theses and Dissertations

The robotics and dynamic systems constantly encountered with disturbances such as micro electro mechanical systems (MEMS) gyroscope under disturbances result in mechanical coupling terms between two axes, friction forces in exoskeleton robot joints, and unmodelled dynamics of robot manipulator. Sliding mode control (SMC) is a robust controller. The main drawback of the sliding mode controller is that it produces high-frequency control signals, which leads to chattering. The research objective is to reduce chattering, improve robustness, and increase trajectory tracking of SMC. In this research, we developed controllers for three different dynamic systems: (i) MEMS, (ii) an Exoskeleton type robot, and …


Copper Electrodeposition In Full Wafer Thickness Through-Silicon Vias, Rebecca P. Schmitt Dec 2020

Copper Electrodeposition In Full Wafer Thickness Through-Silicon Vias, Rebecca P. Schmitt

Chemical and Biological Engineering ETDs

Through-silicon vias (TSVs) are a key interconnect technology for advanced packaging of microelectronic devices, and full wafer thickness TSVs are required for certain microelectromechanical systems (MEMS) applications. In this work, electrolytes containing copper sulfate, an acid, chloride, and Tetronic 701 suppressor were implemented for Cu filling of high aspect ratio (10:1), full wafer thickness TSVs. For each electrolyte system, rotating disk electrode voltammetry was used to identify a voltage range for bottom-up Cu filling in the TSVs. Die level feature filling was performed using voltage ramping, which moved active deposition through the vias to yield void-free Cu features. During voltage-controlled …


Design And Modeling Of Piezoelectric Micromachined Ultrasonic Transducer (Pmut) Using A Multi-User Mems Process For Medical Imaging, Jenitha Antony Balasingam Oct 2020

Design And Modeling Of Piezoelectric Micromachined Ultrasonic Transducer (Pmut) Using A Multi-User Mems Process For Medical Imaging, Jenitha Antony Balasingam

Electronic Theses and Dissertations

According to the Canadian Cancer Society, 2020, “1 in 8 women will be affected by breast cancer and 1 in 33 will die from it.” There has been a decline in breast cancer causalities due to the early detection using advanced imaging technologies. This signifies the importance of early detection of breast cancer that increases the survival rate and treatment options for the patients. One of the platforms which are aiding the early detection is Microelectromechanical Systems (MEMS)-base imaging system. In this thesis, a Piezoelectric Micromachined Ultrasonic Transducer (PMUT) is proposed to work at lower frequency ranges for higher penetration …


Modeling And Effects Of Non-Homogeneous Infiltration On Material Properties Of Carbon-Infiltrated Carbon Nanotube Forests, Daniel Owens Snow Aug 2020

Modeling And Effects Of Non-Homogeneous Infiltration On Material Properties Of Carbon-Infiltrated Carbon Nanotube Forests, Daniel Owens Snow

Theses and Dissertations

This work investigates the material properties and production parameters of carbon infiltrated carbon nanotube structures (CI-CNT's). The impact of non homogeneous infiltration and the porosity of cross section regions, coupled with changes in designed geometry, in this case beam width, on the density and modulus of elasticity are compared. Three potential geometric models of beam cross section are proposed and evaluated. 3-point bending, SEM images, and numerical optimization are used to assess the validity of each model and the implications they have for future CI-CNT material applications. Carbon capping near exterior beam surfaces is observed and determined to be a …


Fabrication Of Silicon Microneedles For Dermal Interstitial Fluid Extraction In Human Subjects, Caleb A. Berry Aug 2020

Fabrication Of Silicon Microneedles For Dermal Interstitial Fluid Extraction In Human Subjects, Caleb A. Berry

Electronic Theses and Dissertations

The goal of this project is to design and develop a fabrication process for silicon microneedle arrays to extract dermal interstitial fluid (ISF) from human skin. ISF is a cell- free, living tissue medium that is known to contain many of the same, clinical biomarkers of general health, stress response and immune status as in blood. However, a significant barrier to adoption of ISF as a diagnostic matrix is the lack of a rapid, minimally invasive method of access and collection for analysis. Microfabricated chips containing arrays of microneedles that can rapidly and painlessly access and collect dermal ISF for …


Developing Highly Symmetric Microelectromechanical Systems (Mems) Based Butterfly Gyroscopes, Nabeel Ahmad Khan Jul 2020

Developing Highly Symmetric Microelectromechanical Systems (Mems) Based Butterfly Gyroscopes, Nabeel Ahmad Khan

Electronic Theses and Dissertations

Microelectromechanical systems (MEMS) is the technology combining electrical components with mechanical systems at a micro scale. The combination of these two technologies allowed devices to interact with each other and build complex structures. System on the chips are built with components such as masses, electrodes, anchors, actuators and detectors. Reducing the size, weight, energy usage and cost is key while maintaining the sensors integrity. Sensitivity is an important factor when evaluating a gyroscope’s performance. This research presents beam modeling techniques for maximizing mechanical sensitivity of the butterfly resonator for gyroscopic applications. It investigates the geometric aspects of synchronizing beam that …


Microrobots For Wafer Scale Microfactory: Design Fabrication Integration And Control., Ruoshi Zhang May 2020

Microrobots For Wafer Scale Microfactory: Design Fabrication Integration And Control., Ruoshi Zhang

Electronic Theses and Dissertations

Future assembly technologies will involve higher automation levels, in order to satisfy increased micro scale or nano scale precision requirements. Traditionally, assembly using a top-down robotic approach has been well-studied and applied to micro-electronics and MEMS industries, but less so in nanotechnology. With the bloom of nanotechnology ever since the 1990s, newly designed products with new materials, coatings and nanoparticles are gradually entering everyone’s life, while the industry has grown into a billion-dollar volume worldwide. Traditionally, nanotechnology products are assembled using bottom-up methods, such as self-assembly, rather than with top-down robotic assembly. This is due to considerations of volume handling …


Development Of A Mems Fabrication Process On Soi To Study High Strain In Transition-Metal Dichalcogenides, Edgar Acosta Jan 2020

Development Of A Mems Fabrication Process On Soi To Study High Strain In Transition-Metal Dichalcogenides, Edgar Acosta

Open Access Theses & Dissertations

Over the recent years there has been an increasing demand of better performing electronics. However, as the semiconductor industry keeps on improving and scaling the technology to the nanometer regime, the passive power density has overcome the overall power consumption of transistors. The inability to reduce the power alongside the scaling of transistors has led the scientific community in the search for alternatives or different solutions to overcome this power crisis. The use of two-dimensional Transition-Metal Dichalcogenides (TMDCS) and Micro-Electro-Mechanical System (MEMS) actuators, in conjunction, has been proposed as an alternative solution [1]. Recent studies of TMDCS have shown a …


Parylene Based Flexible Multifunctional Biomedical Probes And Their Applications, Zhiguo Zhao Jan 2020

Parylene Based Flexible Multifunctional Biomedical Probes And Their Applications, Zhiguo Zhao

Wayne State University Dissertations

MEMS (Micro Electro Mechanical System) based flexible devices have been studied for decades, and they are rapidly being incorporated into modern society in various forms such as flexible electronics and wearable devices. Especially in neuroscience, flexible interfaces provide tremendous possibilities and opportunities to produce reliable, scalable and biocompatible instruments for better exploring neurotransmission and neurological disorders. Of all the types of biomedical instruments such as electroencephalography (EEG) and electrocorticography (ECoG), MEMS-based needle-shape probes have been actively studied in recent years due to their better spatial resolution, selectivity, and sensitivity in chronical invasive physiology monitoring. In order to address the inherent …


Development Of Micro-Scale High Aspect Ratio Patterned Features With Electroless Nickel Plating, Lorli Smith Jan 2020

Development Of Micro-Scale High Aspect Ratio Patterned Features With Electroless Nickel Plating, Lorli Smith

Theses and Dissertations--Mechanical Engineering

This thesis describes a novel method designed to pattern high aspect ratio metallic microscale features using a modified photolithography and electroless nickel plating process. This method utilizes modified photolithography techniques to create a polymer mold that is used to control the location of metal deposition on substrate during electroless nickel plating. In order to generate high aspect ratio mold features, a multiple spin-step process was developed to deposit thick layers of SU-8 photoresist, and inclined lithography was also used to generate tapered sidewalls that could help aid mold removal after plating. Results from electroplating experiments were evaluated using a Zygo …


Advanced Techniques For Carbon Nanotube Templated Microfabrication, Jason Matthew Lund Dec 2019

Advanced Techniques For Carbon Nanotube Templated Microfabrication, Jason Matthew Lund

Theses and Dissertations

Carbon nanotube templated microfabrication (CNT-M) is a term describing a grouping of processes where carbon nanotubes (CNTs) serve a structural role in the fabrication of a material or device. In its basic form, CNT-M is comprised of two steps: produce a template made from carbon nanotubes and infiltrate the porous template with an additional material. Vertically aligned carbon nanotube (VACNT) templates can be grown to heights ranging from microns to millimeters and lithographically patterned to a desired form. Deposition of an existing thin film material onto a CNT template will coat all template surfaces and can produce a near solid …


Evaluation Of Pixel-Scale Tunable Fabry-Perot Filters For Optical Imaging, Daniel L. Edwards Aug 2019

Evaluation Of Pixel-Scale Tunable Fabry-Perot Filters For Optical Imaging, Daniel L. Edwards

Theses

The Fabry-Perot interferometer (FPI) is a well-developed and widely used tool to control and measure wavelengths of light. In optical imaging applications, there is often a need for systems with compact, integrated, and widely tunable spectral filtering capabilities. We evaluate the performance of a novel tunable MEMS (Micro-Electro-Mechanical System) Fabry-Perot (FP) filter device intended to be monolithically integrated over each pixel of a focal plane array. This array of individually tunable FPIs have been designed to operate across the visible light spec-trum from 400-750 nm. This design can give rise to a new line of compact spectrometers with fewer moving …


Multiple Imu Sensor Fusion For Suas Navigation And Photogrammetry, Matthew Givens Aug 2019

Multiple Imu Sensor Fusion For Suas Navigation And Photogrammetry, Matthew Givens

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Inertial measurement units (IMUs) are devices that sense accelerations and angular rates in 3D so that vehicles and other devices can estimate their orientations, positions, and velocities. While traditionally large, heavy, and costly, using mechanical gyroscopes and stabilized platforms, the recent development of micro-electromechanical sensor (MEMS) IMUs that are small, light, and inexpensive has led to their adoption in many everyday systems such as cell phones, video game controllers, and commercial drones. MEMS IMUs, despite their advantages, have major drawbacks when it comes to accuracy and reliability. The idea of using more than one of these sensors in an array, …


Low-Cost, Water Pressure Sensing And Leakage Detection Using Micromachined Membranes, Farhana Anwar Jul 2019

Low-Cost, Water Pressure Sensing And Leakage Detection Using Micromachined Membranes, Farhana Anwar

Master's Theses (2009 -)

This work presents the only known SOI membrane approach, using Microelectromechanical systems (MEMS) fabrication techniques, to address viable water leakage sensing requirements at low cost. In this research, membrane thickness and diameter are used in concert to target specific stiffness values that will result in targeted operational pressure ranges of approximately 0-120 psi. A MEMS membrane device constructed using silicon-on-insulator (SOI) wafers, has been tested and packaged for the water environment. MEMS membrane arrays will be used to determine operational pressure range by bursting.Two applications of these SOI membranes in aqueous environment are investigated in this research. The first …


Secondary Resonances Of Electrostatically Actuated Mems Cantilevers, Christopher I. Reyes May 2019

Secondary Resonances Of Electrostatically Actuated Mems Cantilevers, Christopher I. Reyes

Theses and Dissertations

In this work the behavior of micro-electromechanical (MEMS) cantilever resonators is investigated. The cantilever resonators are electrostatically actuated with hard AC voltage resulting in nine distinct resonances cases including super and subharmonic resonances. The amplitude frequency and amplitude voltage bifurcation diagrams are obtained for each of the nine resonance cases. Reduced order models (ROMs) are developed to include one and two modes of vibration. Three different methods are used to solve the ROMs namely 1) the method of multiple scales (MMS), which is a perturbation method used for one mode of vibration, 2) the homotopy analysis method (HAM), which is …


Liquid Flowmeter Using Thermal Measurement; Design And Application, Woojae Chung Apr 2019

Liquid Flowmeter Using Thermal Measurement; Design And Application, Woojae Chung

Master's Theses (2009 -)

This thesis presents flowmeter devices which can measure flowrate, pressure and temperature offlowing liquid samples using thermal measurement method. Typical thermal mass flowmeter usesthermal properties of materials to obtain flow features only for gases. We designed and fabricatedflowmeter devices with various functionalities such as: measuring properties of flowing liquid andidentifying the type of liquid samples.Thermal measurement methods using temperature sensor is a key of our flowmeter’s workingprinciple. The thermal mass flowmeter consists of a glass capillary, a tungsten wire heater, and aresistance temperature detector (RTD) sensor. The heater and sensors are integrated on …


Development Of A Counter-Flow Thermal Gradient Microfluidic Device, Shayan Davani Feb 2019

Development Of A Counter-Flow Thermal Gradient Microfluidic Device, Shayan Davani

Doctoral Dissertations

This work presents a novel counter-flow design for thermal stabilization of microfluidic thermal reactors. In these reactors, precise control of temperature of the liquid sample is achieved by moving the liquid sample through the thermal zones established ideally through the conduction in the solid material of the device. The goal here is to establish a linear thermal distribution when there is no flow and to minimize the temperature change at flow condition. External convection as well as internal flowinduced effects influence the prescribed thermal distribution. The counter-flow thermal gradient device developed in this study is capable of both stabilizing the …