Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

MEMS

LSU Doctoral Dissertations

Chemical Engineering

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Electrodeposited Metal Matrix Nanocomposites As Thin Films And High Aspect Ratio Microstructures For Mems, Alonso Lozano Morales Jan 2006

Electrodeposited Metal Matrix Nanocomposites As Thin Films And High Aspect Ratio Microstructures For Mems, Alonso Lozano Morales

LSU Doctoral Dissertations

The electrodeposition of metal-matrix nanocomposites as thin film and high aspect ratio microstructures (HARM’s) for MicroElectroMechanical Systems (MEMS) components is examined. The effect of -Al2O3 nanopowder on copper reduction from acidic and basic electrolytes is examined with rotating disk electrodes (RDE’s). At pH 0.2, regions of copper inhibition and enhancement are identified in the kinetic regime. Low particle loading (12.5 g/L) results in an inhibited copper rate, while, high particle concentration (60 g/L) does both, inhibits the rate at low overpotentials and accelerates it at higher overpotentials, depending on the electrode rotation rate. At pH 8 the presence of particles …


Electrodeposition Of Nickel-Copper Alloys And Nickel-Copper-Alumina Nanocomposites Into Deep Recesses For Mems, Amrit Panda Jan 2003

Electrodeposition Of Nickel-Copper Alloys And Nickel-Copper-Alumina Nanocomposites Into Deep Recesses For Mems, Amrit Panda

LSU Doctoral Dissertations

Electrodeposition is an important component in the fabrication of micro electro mechanical systems (MEMS). Nickel is the most commonly used material to produce three dimensional microstructures and few material alternatives have been demonstrated. In this dissertation, electrodeposited Ni-Cu alloys and nanocomposites are investigated as possible replacements for nickel in microsystems. Ni-Cu alloys are attractive for their corrosion resistance, magnetic and thermophysical properties. Alumina nanoparticulates included into metal matrices improve hardness and tribology of deposits. The Ni-Cu alloys and Ni-Cu-g-Al2O3 nanocomposites were electrodeposited from a citrate electrolyte, both at low and high pH. Electrodeposition experiments were performed in recessed microelectrodes 500 …