Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Entire DC Network

Investigating Mems Devices In Flow Conditions Relevant To Flow-Through Systems., Mohammad Shafquatul Islam Dec 2023

Investigating Mems Devices In Flow Conditions Relevant To Flow-Through Systems., Mohammad Shafquatul Islam

Electronic Theses and Dissertations

Advancements in microscale actuating technologies has substantially expanded the possibilities of interacting with the surrounding environment. Microstructures that deflect in response to mechanical forces are one of the largest application areas of microelectromechanical systems (MEMS). MEMS devices, functioning as sensors, actuators, and support structures, find applications in inertial sensors, pressure sensors, chemical sensors, and robotics, among others. Driven by the critical role of catalytic membrane reactors, this dissertation aims to evaluate enzyme activity on polymeric membranes and explore how fabrication methods from the field of Electrical and Computer Engineering (ECE) can incorporate sensing and actuation into these porous surfaces. Toward …


Feasibility Study Of Radio Frequency Microelectromechanical Filters For Space Operation, Karanvir Singh Jun 2021

Feasibility Study Of Radio Frequency Microelectromechanical Filters For Space Operation, Karanvir Singh

Theses and Dissertations

Piezoelectric contour mode resonator technology has the unique advantage of combining low motional resistance with the ability to define multiple frequencies on the same substrate. Contour mode resonators can be mechanically coupled together to form robust band-pass filters for the next generation of GPS satellites with extreme size reduction compared to electrically coupled filters. Piezoelectric zinc oxide (ZnO) contour mode resonators have the potential for monolithic integration with current ZnO transistor further reducing size, power consumption, and cost of filter modules. Barium strontium titanate (BST) contour mode resonators have incredible frequency tunability due to the fundamental nature of the thin …


Development Of A Mems Fabrication Process On Soi To Study High Strain In Transition-Metal Dichalcogenides, Edgar Acosta Jan 2020

Development Of A Mems Fabrication Process On Soi To Study High Strain In Transition-Metal Dichalcogenides, Edgar Acosta

Open Access Theses & Dissertations

Over the recent years there has been an increasing demand of better performing electronics. However, as the semiconductor industry keeps on improving and scaling the technology to the nanometer regime, the passive power density has overcome the overall power consumption of transistors. The inability to reduce the power alongside the scaling of transistors has led the scientific community in the search for alternatives or different solutions to overcome this power crisis. The use of two-dimensional Transition-Metal Dichalcogenides (TMDCS) and Micro-Electro-Mechanical System (MEMS) actuators, in conjunction, has been proposed as an alternative solution [1]. Recent studies of TMDCS have shown a …


Conductivity Modulation In Strained 2d Transition- Metal- Dichalcogenides Via Micro- Electro- Mechanical Actuation, Aldo Ivan Vidaña Jan 2019

Conductivity Modulation In Strained 2d Transition- Metal- Dichalcogenides Via Micro- Electro- Mechanical Actuation, Aldo Ivan Vidaña

Open Access Theses & Dissertations

In this thesis, strain-induced conductivity modulation in bi-layer molybdenum disulfide (MoS2) flakes is experimentally investigated and modeled. Uniaxial tensile strain in the MoS2 flakes is achieved using a micro-electro-mechanical (MEM) actuator. Conductivity ratios up to 400 are demonstrated. Theoretical predictions of conductivity versus applied voltage in the MEMS-MoS2 device match experimental data reasonably well using only the effective width of the TMDC flakes as the sole fitting parameter. The amount of strain induced in the MoS2 flakes was determined to be as high as 2.7% for one flake using the model fitted to the experiment data. The switching energy required …


Design And Characterization Of A Low Cost Mems Imu Cluster For Precision Navigation, Daniel R. Greenheck Jul 2015

Design And Characterization Of A Low Cost Mems Imu Cluster For Precision Navigation, Daniel R. Greenheck

Master's Theses (2009 -)

The fast paced development of micro-electromechanical systems (MEMS) technology in recent years has resulted in the availability of low cost gyroscopes and accelerometers in commercial markets. These sensors can be integrated into a single device known as an inertial measurement unit (IMU). An IMU is capable of tracking and navigating a vehicle for a short period of time in the absence of external position and attitude updates. The precision of the manufacturing techniques used to fabricate commercial MEMS sensors as well as their mechanical nature result in noise and errors that limit their performance. It has been mathematically shown that …


Modeling Of The Response Of A Memcapacitor For An Impulse, Step, Ramp, And Sinusiodal Inputs, Ghassan Khalil Kachmar Jan 2015

Modeling Of The Response Of A Memcapacitor For An Impulse, Step, Ramp, And Sinusiodal Inputs, Ghassan Khalil Kachmar

Open Access Theses & Dissertations

Micro-Electro-Mechanical Systems, or MEMS, is a technology of very small scale devices. The dimensions of MEMS can vary from below one micron to several millimeters. MEMS have some mechanical functionalities such as the moving plate of a parallel plate capacitor (memcapacitor). MEMS researchers and developers have demonstrated an extremely large number of microsensors for almost every possible sensing modality including temperature, pressure, inertial forces, and chemical species. The equation of motion of the moving plate of a memcapacitor is governed by a non-linear differential equation with no known exact solution. Most research into determining the theoretical response of a memcapacitor …


Integration Of Memristors With Mems For Dynamic Displacement Control, Sergio Fabian Almeida Loya Jan 2013

Integration Of Memristors With Mems For Dynamic Displacement Control, Sergio Fabian Almeida Loya

Open Access Theses & Dissertations

In recent years the demand for high-speed, lower power consumption and large-capacity non-volatile memories has increased. Promisingly the memristor can be used due to its special characteristic of having memory through resistance change. The memristor behavior is not limited to digital applications but it can be used in analog application as well including: memristors in chaotic circuits, amoeba's learning, neural synaptic emulation, reprogrammable and reconfigurable circuits, and for neuromorphic computers. On the other hand Micro Electro Mechanical Systems (MEMS) are small scale structures that can interact with the physical world due to their mechanical properties. These devices are widely used …


Fabrication And Characterization Of Torsional Micro-Hinge Structures, Mike Madrid Marrujo Jun 2012

Fabrication And Characterization Of Torsional Micro-Hinge Structures, Mike Madrid Marrujo

Master's Theses

ABSTRACT

Fabrication and Characterization of Torsional Micro-Hinge Structures

Mike Marrujo

There are many electronic devices that operate on the micrometer-scale such as Digital Micro-Mirror Devices (DMD). Micro actuators are a common type of DMD that employ a diaphragm supported by torsional hinges, which deform during actuation and are critical for the devices to have high stability and reliability. The stress developed within the hinge during actuation controls how the actuator will respond to the actuating force. Electrostatically driven micro actuators observe to have a fully recoverable non-linear viscoelastic response. The device consists of a micro-hinge which is suspended by two …