Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Reliability-Based Optimization Of Fiber-Reinforced Polymer Composite Bridge Deck Panels, Michel D. Thompson, Christopher D. Eamon, Masoud Rais-Rohani Dec 2006

Reliability-Based Optimization Of Fiber-Reinforced Polymer Composite Bridge Deck Panels, Michel D. Thompson, Christopher D. Eamon, Masoud Rais-Rohani

Civil and Environmental Engineering Faculty Research Publications

A reliability-based optimization (RBO) procedure is developed and applied to minimize the weight of eight fiber-reinforced polymer composite bridge deck panel configurations. The method utilizes interlinked finite element, optimization, and reliability analysis procedures to solve the weight minimization problem with a deterministic strength constraint and two probabilistic deflection constraints. Panels are composed of an upper face plate, lower face plate, and a grid of interior stiffeners. Different panel depths and stiffener layouts are considered. Sensitivity analyses are conducted to identify significant design and random variables. Optimization design variables are panel component ply thicknesses while random variables include load and material …


Design And Fabrication Of Rotationally Tristable Compliant Mechanisms, Tyler M. Pendleton Sep 2006

Design And Fabrication Of Rotationally Tristable Compliant Mechanisms, Tyler M. Pendleton

Theses and Dissertations

The purpose of this research is to develop the tools necessary to create tristable compliant mechanisms; the work presents the creation of models and concepts for design and a demonstration of the feasibility of the designs through the fabrication of tristable compliant mechanism prototypes on the macro scale. Prior methods to achieve tristable mechanisms rely on detents, friction, or power input; disadvantages to these methods include a high number of parts, the necessity for lubrication, and wear. A compliant tristable mechanism accomplishes tristability through strain energy storage. These mechanisms would be preferable because of increased performance and cost savings due …


Design Optimization Of Solid Rocket Motor Grains For Internal Ballistic Performance, Roger Hainline Jan 2006

Design Optimization Of Solid Rocket Motor Grains For Internal Ballistic Performance, Roger Hainline

Electronic Theses and Dissertations

The work presented in this thesis deals with the application of optimization tools to the design of solid rocket motor grains per internal ballistic requirements. Research concentrated on the development of an optimization strategy capable of efficiently and consistently optimizing virtually an unlimited range of radial burning solid rocket motor grain geometries. Optimization tools were applied to the design process of solid rocket motor grains through an optimization framework developed to interface optimization tools with the solid rocket motor design system. This was done within a programming architecture common to the grain design system, AML. This commonality in conjunction with …


An Optimal Dynamic Inversion Approach For Controlling A Class Of One-Dimensional Nonlinear Distributed Parameter Systems, Radhakant Padhi, S. N. Balakrishnan Jan 2006

An Optimal Dynamic Inversion Approach For Controlling A Class Of One-Dimensional Nonlinear Distributed Parameter Systems, Radhakant Padhi, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Combining the principles of dynamic inversion and optimization theory, a new approach is presented for stable control of a class of one-dimensional nonlinear distributed parameter systems, assuming the availability a continuous actuator in the spatial domain. Unlike the existing approximate-then-design and design-then-approximate techniques, here there is no need of any approximation either of the system dynamics or of the resulting controller. Rather, the control synthesis approach is fairly straight-forward and simple. The controller formulation has more elegance because we can prove the convergence of the controller to its steady state value. To demonstrate the potential of the proposed technique, a …


Robust Shape Design Techniques For Steady-State Metal Forming Processes, Jalaja Repalle Jan 2006

Robust Shape Design Techniques For Steady-State Metal Forming Processes, Jalaja Repalle

Browse all Theses and Dissertations

Metal forming is a process that transforms a simple shape of a workpiece into a predetermined complex shape through the application of compressive/tensile forces exerted by dies. In the design of a forming process, the only factors that are known are the final component shape and the material with which it is to be made. Then the engineer has to design a process to make defect-free product, subject to limitations of shape, material properties, cost, time, and other such factors. The design cycle can be enhanced if performance sensitivity information is available that could be used with any commercially available …