Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Kinetic Monte Carlo Investigations Involving Atomic Layer Deposition Of Metal-Oxide Thinfilms, David Tyler Magness Dec 2020

Kinetic Monte Carlo Investigations Involving Atomic Layer Deposition Of Metal-Oxide Thinfilms, David Tyler Magness

MSU Graduate Theses

Atomic Layer Deposition is a method of manufacturing thin film materials. Metal-oxides such as zinc-oxide and aluminum-oxide are particularly interesting candidates for use in microelectronic devices such as tunnel junction barriers, transistors, Schottky diodes, and more. By adopting a 3D Kinetic Monte Carlo model capable of simulating ZnO deposition, the effect of parameters including deposition temperature, chamber pressure, and composition of the initial substrate at the beginning of deposition can be investigated. This code generates two random numbers: One is used to select a chemical reaction to occur from a list of all possible reactions and the second is used …


Heterostructure Of 2d Materials: Hfs2/Hfo2/Si, Christopher J. Robledo Aug 2020

Heterostructure Of 2d Materials: Hfs2/Hfo2/Si, Christopher J. Robledo

MSU Graduate Theses

Heterostructures have been utilized in electronic devices for over 50 years with the proposal for the first heterostructure transistor in 1957. With the scaling of devices, it is necessary to create new heterostructures that will comply with Moore’s Law, as well as make devices faster and consume less power. Novel 2D materials, such as hafnium disulfide, have shown promise as an active channel layer, while hafnium dioxide is already proven to be a replacement of silicon dioxide for the gate insulating layer. However, fabrication techniques for wide-scale integration of these heterostructures have not yet been achieved. Also, the dielectric properties …


Rational Interface Design For High-Performance All-Solid-State Lithium Batteries, Changhong Wang Jan 2020

Rational Interface Design For High-Performance All-Solid-State Lithium Batteries, Changhong Wang

Electronic Thesis and Dissertation Repository

All-solid-state lithium batteries (ASSLBs) have gained substantial attention owing to their excellent safety and high energy density. However, the development of ASSLBs has been hindered by large interfacial resistance originating from the detrimental interfacial reactions, poor solid-solid contact, and lithium dendrite growth. The research in this thesis aims at achieving high-performance ASSLBs via rational interface design and understanding the interfacial reaction mechanisms.

At the cathode interface, an ideal dual core-shell nanostructure was first designed. Moreover, single-crystal LiNi0.5Mn0.3Co0.2O2 (SC-NMC532) cathode was compared with polycrystalline NMC532, the former exhibits much enhanced Li+ diffusion kinetics …