Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

Magnetic Anisotropy And Exchange Bias In L10 Fept/Nio Bilayer Thin Films, Zachary B. Leuty May 2018

Magnetic Anisotropy And Exchange Bias In L10 Fept/Nio Bilayer Thin Films, Zachary B. Leuty

MSU Graduate Theses

Perpendicular exchange bias (PEB), particularly when it persists in nanomaterials to room temperature, is highly useful for applications in spintronic devices and for advancing the development of high-information-density magnetic random access memory. A complete mechanistic and theoretical understanding of exchange bias has evaded scientists. The quest to discover novel materials for magnetic and spintronic device applications has stimulated investigation into nanomaterials having optimal and/or tailored magnetic properties that are based on the exchange bias effect. In this study, pulsed laser deposition was used to grow epitaxial PEB systems of ferromagnetic FePt thin film layers that are interfaced with antiferromagnetic NiO …


Growth And Analysis Of Transition-Metal-Doped Znse-Based Materials And Thin Film Structures For Mid-Infrared Optoelectronic Applications, Zachary R. Lindsey Jan 2018

Growth And Analysis Of Transition-Metal-Doped Znse-Based Materials And Thin Film Structures For Mid-Infrared Optoelectronic Applications, Zachary R. Lindsey

All ETDs from UAB

Transition metal (TM)-doped II-VI semiconductor thin films have been shown to be attractive materials for mid-infrared (mid-IR) laser sources due to broad applicability in the sensing and detection of a wide range of organic molecules. Specifically, when ZnSe is doped with Cr2+ ions, the resulting broadband emission characteristics in the 2-3 µm spectral range create the potential for tunable lasing in the mid-IR. This dissertation research is motivated by the need for low cost, efficient, portable materials to be incorporated into multilayered mid-IR optoelectronic devices providing appropriate optical confinement, efficient quantum confinement of carriers, and optical emission in the mid-IR …


Electrodeposited Semiconductor Nanostructures & Epitaxial Thin Films For Flexible Electronics, Naveen Kumar Mahenderkar Jan 2018

Electrodeposited Semiconductor Nanostructures & Epitaxial Thin Films For Flexible Electronics, Naveen Kumar Mahenderkar

Doctoral Dissertations

"Single-crystal Si is the bedrock of semiconductor devices due to the high crystalline perfection which minimizes electron-hole recombination, and the dense native silicon oxide which minimizes surface states. To expand the palette of electronic materials beyond planar Si, an inexpensive source of highly ordered material is needed that can serve as an inert substrate for the epitaxial growth of grain boundary-free semiconductors, photonic materials, and superconductors. There is also a need for a simple, inexpensive, and scalable fabrication technique for the growth of semiconductor nanostructures and thin films. This dissertation focuses on the fabrication of semiconducting nanowires (polycrystalline Ge & …


Growth Of Epitaxial Graphene On Single Crystal Copper Surfaces By Chemical Vapor Deposition, Tyler Rutley Mowll Jan 2018

Growth Of Epitaxial Graphene On Single Crystal Copper Surfaces By Chemical Vapor Deposition, Tyler Rutley Mowll

Legacy Theses & Dissertations (2009 - 2024)

Graphene is of significant interest due to its unique properties, such as high carrier mobility, mechanical strength, and thermal conductivity. Potential applications include next generation transistors, interconnects, biological and chemical sensing devices, and super capacitors. The research presented here addresses unresolved questions regarding the nucleation and growth of graphene by chemical vapor deposition (CVD) on the high index surfaces of copper single crystals. While much CVD graphene growth has been performed on copper foils, the polycrystalline nature of the foils renders large-scale single domain growth of graphene difficult. For this reason, many groups seek to reduce the nucleation rate of …