Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 172

Full-Text Articles in Entire DC Network

Pyseg: A Python Package For 2d Material Flake Localization, Segmentation, And Thickness Prediction, Diana B. Horangic Dec 2022

Pyseg: A Python Package For 2d Material Flake Localization, Segmentation, And Thickness Prediction, Diana B. Horangic

Student Research Projects

Thin materials are of interest for their extraordinary physical, mechanical, thermal, electrical, and optical properties. Monolayers and bilayers of 2D materials can be manufactured through a variety of exfoliation methods. To determine layer thickness, Raman spectroscopy or other methods like Rayleigh scattering are used. These methods are, however, slow, and they require equipment beyond an optical microscope. A Python package that automates flake identification processes was built, with access solely to RGB data from an optical microscope assumed. My package, pyseg, localizes flakes on a substrate and then makes a rough estimate of their thickness from first principles. It can …


Helium Nanodroplets As An Efficient Tool To Investigate Hydrogen Attachment To Alkali Cations, Siegfried Kollotzek, José Campos-Martínez, Massimiliano Bartolomei, Fernando Pirani, Lukas Tiefenthaler, Marta I. Hernández, Teresa Lázaro, Eva Zunzunegui-Bru, Tomás González-Lezana, José Bretón, Javier Hernández-Rojas, Olof E. Echt, Paul Scheier Nov 2022

Helium Nanodroplets As An Efficient Tool To Investigate Hydrogen Attachment To Alkali Cations, Siegfried Kollotzek, José Campos-Martínez, Massimiliano Bartolomei, Fernando Pirani, Lukas Tiefenthaler, Marta I. Hernández, Teresa Lázaro, Eva Zunzunegui-Bru, Tomás González-Lezana, José Bretón, Javier Hernández-Rojas, Olof E. Echt, Paul Scheier

Faculty Publications

We report a novel method to reversibly attach and detach hydrogen molecules to positively charged sodium clusters formed inside a helium nanodroplet host matrix. It is based on the controlled production of multiply charged helium droplets which, after picking up sodium atoms and exposure to H2 vapor, lead to the formation of Nam+(H2)n clusters, whose population was accurately measured using a time-of-flight mass spectrometer. The mass spectra reveal particularly favorable Na+(H2)n and Na2+(H2)n clusters for specific “magic” numbers of attached hydrogen molecules. …


Solvation Of Large Polycyclic Aromatic Hydrocarbons In Helium: Cationic And Anionic Hexabenzocoronene, Miriam Kappe, Florent Calvo, Johannes Schöntag, Holger F. Bettinger, Serge Krasnokutski, Martin Kuhn, Elisabeth Gruber, Fabio Zappa, Paul Scheier, Olof E. Echt Oct 2022

Solvation Of Large Polycyclic Aromatic Hydrocarbons In Helium: Cationic And Anionic Hexabenzocoronene, Miriam Kappe, Florent Calvo, Johannes Schöntag, Holger F. Bettinger, Serge Krasnokutski, Martin Kuhn, Elisabeth Gruber, Fabio Zappa, Paul Scheier, Olof E. Echt

Faculty Publications

The adsorption of helium on charged hexabenzocoronene (Hbc, C42H18), a planar polycyclic aromatic hydrocarbon (PAH) molecule of D6h symmetry, is investigated by a combination of high-resolution mass spectrometry and classical and quantum computational methods. The ion abundance of HenHbc+ complexes versus size n features prominent local anomalies at n = 14, 38, 68, 82, and a weak one at 26, indicating that for these “magic” sizes the helium evaporation energies are relatively large. Surprisingly, mass spectra of anionic HenHbc complexes feature a different set of anomalies, namely at …


Adsorption Of Helium And Hydrogen On Triphenylene And 1,3,5-Triphenylbenzene, Bergmeister Bergmeister, Kollotzek Kollotzek, Florent Calvo, Elisabeth Gruber, Fabio Zappa, Paul Scheier, Olof E. Echt Aug 2022

Adsorption Of Helium And Hydrogen On Triphenylene And 1,3,5-Triphenylbenzene, Bergmeister Bergmeister, Kollotzek Kollotzek, Florent Calvo, Elisabeth Gruber, Fabio Zappa, Paul Scheier, Olof E. Echt

Faculty Publications

The adsorption of helium or hydrogen on cationic triphenylene (TPL, C18H12), a planar polycyclic aromatic hydrocarbon (PAH) molecule, and of helium on cationic 1,3,5-triphenylbenzene (TPB, C24H18), a propeller-shaped PAH, is studied by a combination of high-resolution mass spectrometry and classical and quantum computational methods. Mass spectra indicate that HenTPL+ complexes are particularly stable if n = 2 or 6, in good agreement with the quantum calculations which show that for these sizes the helium atoms are strongly localized on either side of the central carbon ring for n = …


Stabilization Of Phenanthrene Anions In Helium Nanodroplets, Siegfried Kollotzek, Farhad Izadi, Miriam Meyer, Stefan Bergmeister, Fabio Zappa, Stephan Denifl, Olof E. Echt, Paul Scheier, Elisabeth Gruber May 2022

Stabilization Of Phenanthrene Anions In Helium Nanodroplets, Siegfried Kollotzek, Farhad Izadi, Miriam Meyer, Stefan Bergmeister, Fabio Zappa, Stephan Denifl, Olof E. Echt, Paul Scheier, Elisabeth Gruber

Faculty Publications

It has been debated for years if the polycyclic aromatic hydrocarbon phenanthrene exists in its anionic form, or, in other words, if its electron affinity (EA) is positive or negative. In this contribution we confirm that the bare phenanthrene anion Ph- created in a binary collision with an electron at room temperature has a lifetime shorter than microseconds. However, the embedding of neutral phenanthrene molecules in negatively charged helium nanodroplets enables the formation of phenanthrene anions by charge transfer processes and the stabilization of the latter in the ultracold environment. Gentle shrinking of the helium matrix of phenanthrene-doped HNDs …


Phenanthrene: Establishing Lower And Upper Bounds To The Binding Energy Of A Very Weakly Bound Anion, Elisabeth Gruber, Siegfried Kollotzek, Stefan Bergmeister, Fabio Zappa, Milan Ončák, Paul Scheier, Olof E. Echt Feb 2022

Phenanthrene: Establishing Lower And Upper Bounds To The Binding Energy Of A Very Weakly Bound Anion, Elisabeth Gruber, Siegfried Kollotzek, Stefan Bergmeister, Fabio Zappa, Milan Ončák, Paul Scheier, Olof E. Echt

Faculty Publications

Quite a few molecules do not form stable anions that survive the time needed for their detection; their electron affinities (EA) are either very small or negative. How does one measure the EA if the anion cannot be observed? Or, at least, can one establish lower and upper bounds to their EA? We propose two approaches that provide lower and upper bounds. We choose the phenanthrene (Ph) molecule whose EA is controversial. Through competition between helium evaporation and electron detachment in HenPh- clusters, formed in helium nanodroplets, we estimate the lower bound of the vertical detachment energy …


Splashing Of Large Helium Nanodroplets Upon Surface Collisions, Paul Martini, Simon Albertini, Felix Laimer, Miriam Meyer, Michael Gatchell, Olof E. Echt, Fabio Zappa, Paul Scheier Dec 2021

Splashing Of Large Helium Nanodroplets Upon Surface Collisions, Paul Martini, Simon Albertini, Felix Laimer, Miriam Meyer, Michael Gatchell, Olof E. Echt, Fabio Zappa, Paul Scheier

Faculty Publications

In the present work we observe that helium nanodroplets colliding with surfaces can exhibit splashing in a way that is analogous to classical liquids. We use transmission electron microscopy and mass spectrometry to demonstrate that neutral and ionic dopants embedded in the droplets are efficiently backscattered in such events. High abundances of weakly bound He-tagged ions of both polarities indicate a gentle extraction mechanism of these ions from the droplets upon collision with a solid surface. This backscattering process is observed for dopant particles with masses up to 400 kilodaltons, indicating an unexpected mechanism that effectively lowers deposition rates of …


Adsorption Of Helium On A Charged Propeller Molecule: Hexaphenylbenzene, Siegfried Kollotzek, Florent Calvo, Serge Krasnokutski, Fabio Zappa, Paul Scheier, Olof E. Echt Nov 2021

Adsorption Of Helium On A Charged Propeller Molecule: Hexaphenylbenzene, Siegfried Kollotzek, Florent Calvo, Serge Krasnokutski, Fabio Zappa, Paul Scheier, Olof E. Echt

Faculty Publications

Physisorption on planar or curved graphitic surfaces or aromatic rings has been investigated by various research groups, but in these studies the substrate was usually strictly rigid. Here we report a combined experimental and theoretical study of helium adsorption on cationic hexaphenylbenzene (HPB), a propeller-shaped molecule. The orientation of its propeller blades is known to be sensitive to the environment, with substantial differences between the molecule in the gas phase and in the crystalline solid. Mass spectra of HenHPB+, synthesized in helium nanodroplets, indicate enhanced stability for ions containing n = 2, 4, 14, 28, 42, …


Complexes With Atomic Gold Ions: Efficient Bisligand Formation, Felix Duensing, Elisabeth Gruber, Paul Martini, Marcelo Goulart, Michael Gatchell, Bilal Rasul, Olof E. Echt, Fabio Zappa, Masoomeh Mahmoodi-Darian, Paul Scheier Jun 2021

Complexes With Atomic Gold Ions: Efficient Bisligand Formation, Felix Duensing, Elisabeth Gruber, Paul Martini, Marcelo Goulart, Michael Gatchell, Bilal Rasul, Olof E. Echt, Fabio Zappa, Masoomeh Mahmoodi-Darian, Paul Scheier

Faculty Publications

Complexes of atomic gold with a variety of ligands have been formed by passing helium nanodroplets (HNDs) through two pickup cells containing gold vapor and the vapor of another dopant, namely a rare gas, diatomic molecule (H2, N2, O2, I2, P2), or various polyatomic molecules (H2O, CO2, SF6, C6H6, adamantane, imidazole, di-cyclopentadiene, and fullerene). The doped HNDs were irradiated by electrons; ensuing cations were identified in a high-resolution mass spectrometer. Anions were detected for benzene, di-cyclopentadiene, and fullerene. For most …


Development And Implementation Of A Pressure-Temperature Control System For The Physical Vapor Deposition Of Copper And Niobium From A Molybdenum Filament In The Development Of Superconducting 3d Printed Rf Cavity Particle Accelerators, Chandler J. Fleuette May 2021

Development And Implementation Of A Pressure-Temperature Control System For The Physical Vapor Deposition Of Copper And Niobium From A Molybdenum Filament In The Development Of Superconducting 3d Printed Rf Cavity Particle Accelerators, Chandler J. Fleuette

Student Research Projects

This report covers the development of the pressure-temperature control system used in the production of small superconducting RF cavities for particle accelerators. To test the validity of the created program, a model for the process was created and tested. The model was used to fine tune the control system before integrating it into the lab. The end goal of the control system is to measure the pressure inside of a deposition vacuum chamber, convert that pressure to a temperature, and use that temperature in tandem with a PID controller to control the current passing though a molybdenum filament which is …


Sf6+: Stabilizing Transient Ions In Helium Nanodroplets, Simon Albertini, Stefan Bergmeister, Felix Laimer, Paul Martini, Elisabeth Gruber, Fabio Zappa, Milan Ončák, Paul Scheier, Olof E. Echt Apr 2021

Sf6+: Stabilizing Transient Ions In Helium Nanodroplets, Simon Albertini, Stefan Bergmeister, Felix Laimer, Paul Martini, Elisabeth Gruber, Fabio Zappa, Milan Ončák, Paul Scheier, Olof E. Echt

Faculty Publications

There are myriads of ions that are deemed too short-lived to be experimentally accessible. One of them is SF6+. It has never been observed, although not for lack of trying. We demonstrate that long-lived SF6+ can be formed by doping charged helium nanodroplets (HNDs) with sulfur hexafluoride; excess helium is then gently stripped from the doped HNDs by collisions with helium gas. The ion is identified by high-resolution mass spectrometry (resolution m/Dm = 15000), the close agreement between the expected and observed yield of ions that contain minor sulfur isotopes, and collision-induced dissociation …


Electronic Transitions In Rb2+ Dimers Solvated In Helium, Simon Albertini, Paul Martini, Arne Schiller, Harald Schöbel, Elham Ghavidel, Milan Ončák, Olof E. Echt, Paul Scheier Mar 2021

Electronic Transitions In Rb2+ Dimers Solvated In Helium, Simon Albertini, Paul Martini, Arne Schiller, Harald Schöbel, Elham Ghavidel, Milan Ončák, Olof E. Echt, Paul Scheier

Faculty Publications

We have measured depletion spectra of the heteronuclear (85Rb87Rb+) dimer cation complexed with up to 10 He atoms. Two absorption bands are observed between 920 and 250 nm. The transition into the repulsive 12Sigmau+ state of HeRb2+ gives rise to a broad feature at 790 nm (12650 cm–1); it exhibits a blueshift of 98 cm–1 per added He atom. The transition into the bound 1 2Piu state of HeRb2+ reveals vibrational structure with a band head at < 15522 cm–1, a harmonic …


Analysis And Implementation Of The Maximum Likelihood Expectation Maximization Algorithm For Find, Angus Boyd Jameson Dec 2020

Analysis And Implementation Of The Maximum Likelihood Expectation Maximization Algorithm For Find, Angus Boyd Jameson

Student Research Projects

This thesis presents an organized explanation and breakdown of the Maximum Likelihood Expectation Maximization image reconstruction algorithm. This background research was used to develop a means of implementing the algorithm into the imaging code for UNH's Field Deployable Imaging Neutron Detector to improve its ability to resolve complex neutron sources. This thesis provides an overview for this implementation scheme, and include the results of a couple of reconstruction tests for the algorithm. A discussion is given on the current state of the algorithm and its integration with the neutron detector system, and suggestions are given for how the work and …


Review Of Solid Polarized Targets, Leiqaa Kurbany May 2018

Review Of Solid Polarized Targets, Leiqaa Kurbany

Student Research Projects

In the following pages I review polarized solid-state target briefly. What I discovered through my reading and writing about this technology, that is amazing tool to study the nucleon structure. I started with what is polarized solid-state target, went through Dynamic Nuclear Polarization (DNP) to understanding how it works, then its setup, in what experiments they used polarized solid-state target and some results of these experiments and finally I wrote a brief definition to many of terms, they are important to know to understand what is polarized solid state target.


Disorder Influences The Quantum Critical Transport At A Superconductor-To-Insulator Transition, H Q. Nguyen, Shawna M. Hollen, J M. Valles Jr., J Shainline, J. M. Xu Oct 2015

Disorder Influences The Quantum Critical Transport At A Superconductor-To-Insulator Transition, H Q. Nguyen, Shawna M. Hollen, J M. Valles Jr., J Shainline, J. M. Xu

Physics & Astronomy

We isolated flux disorder effects on the transport at the critical point of the quantum magnetic field tuned superconductor-to-insulator transition (BSIT). The experiments employed films patterned into geometrically disordered hexagonal arrays. Spatial variations in the flux per unit cell, which grow in a perpendicular magnetic field, constitute flux disorder. The growth of flux disorder with magnetic field limited the number of BSITs exhibited by a single film due to flux matching effects. The critical metallic resistance at successive BSITs grew with flux disorder contrary to predictions of its universality. These results open the door for controlled studies of disorder effects …


Modification Of Electronic Surface States By Graphene Islands On Cu(111), Shawna M. Hollen, G A. Gambrel, S J. Tjung, N M. Santagata, Ezekiel Johnston-Halperin, Jay A. Gupta May 2015

Modification Of Electronic Surface States By Graphene Islands On Cu(111), Shawna M. Hollen, G A. Gambrel, S J. Tjung, N M. Santagata, Ezekiel Johnston-Halperin, Jay A. Gupta

Physics & Astronomy

We present a study of graphene/substrate interactions on ultrahigh-vacuum-grown graphene islands with minimal surface contamination using in situ low-temperature scanning tunneling microscopy. We compare the physical and electronic structure of the sample surface with atomic spatial resolution on graphene islands versus regions of bare Cu(111) substrate. We find that the Rydberg-like series of image potential states is shifted toward lower energy over the graphene islands relative to Cu(111), indicating a decrease in the local work function, and the resonances have a much smaller linewidth, indicating reduced coupling to the bulk. In addition, we show the dispersion of the occupied Cu(111) …


Transport In Thin Insulating Films Close To The Boson-Fermion Crossover, J C. Joy, X Zhang, Shawna M. Hollen, C Zhao, G. E. Fernandes, J. M. Xu, J M. Valles Jr. Mar 2015

Transport In Thin Insulating Films Close To The Boson-Fermion Crossover, J C. Joy, X Zhang, Shawna M. Hollen, C Zhao, G. E. Fernandes, J. M. Xu, J M. Valles Jr.

Physics & Astronomy

No abstract provided.


Scanning Tunneling Microscopy Studies Of Graphene And Hydrogenated Graphene On Cu, Shawna M. Hollen, G A. Gambrel, S J. Tjung, N M. Santagata, Ezekiel Johnston-Halperin, Jay A. Gupta Mar 2015

Scanning Tunneling Microscopy Studies Of Graphene And Hydrogenated Graphene On Cu, Shawna M. Hollen, G A. Gambrel, S J. Tjung, N M. Santagata, Ezekiel Johnston-Halperin, Jay A. Gupta

Physics & Astronomy

Because of the innate sensitivity of 2D material surfaces, it is increasingly important to understand and characterize surface functionalization and interactions with environmental elements, such as substrate, metallic contacts, and adatoms. We developed a method for reproducible, epitaxial growth of pristine graphene islands on Cu(111) in UHV and use scanning tunneling microscopy and spectroscopy (STM) to study the interaction of these graphene islands with the Cu substrate. Tunneling spectroscopy measurements of the electronic surface states over the graphene islands indicate a lower local work function, decreased coupling to bulk Cu states, and a decreased electron effective mass. Additionally, we developed …


Investigation Of Emic Wave Scattering As The Cause For The Barrel 17 January 2013 Relativistic Electron Precipitation Event: A Quantitative Comparison Of Simulation With Observations, Zan Li, Robyn M. Millan, Mary K. Hudson, Leslie A. Woodger, David M. Smith, Yue Chen, R. Friedel, J. V. Rodriguez, Mark J. Engebretson, J. Goldstein, Joseph F. Fennell, Harlan E. Spence Dec 2014

Investigation Of Emic Wave Scattering As The Cause For The Barrel 17 January 2013 Relativistic Electron Precipitation Event: A Quantitative Comparison Of Simulation With Observations, Zan Li, Robyn M. Millan, Mary K. Hudson, Leslie A. Woodger, David M. Smith, Yue Chen, R. Friedel, J. V. Rodriguez, Mark J. Engebretson, J. Goldstein, Joseph F. Fennell, Harlan E. Spence

Physics & Astronomy

Abstract

Electromagnetic ion cyclotron (EMIC) waves were observed at multiple observatory locations for several hours on 17 January 2013. During the wave activity period, a duskside relativistic electron precipitation (REP) event was observed by one of the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) balloons and was magnetically mapped close to Geostationary Operational Environmental Satellite (GOES) 13. We simulate the relativistic electron pitch angle diffusion caused by gyroresonant interactions with EMIC waves using wave and particle data measured by multiple instruments on board GOES 13 and the Van Allen Probes. We show that the count rate, the energy …


Quantifying The Relative Contributions Of Substorm Injections And Chorus Waves To The Rapid Outward Extension Of Electron Radiation Belt, Q. Zong, C A. Kletzing, W. S. Kurth, G. B. Hospodarsky, Harlan E. Spence, Geoffrey Reeves, H. O. Funsten, J. B. Blake, D. N. Baker Dec 2014

Quantifying The Relative Contributions Of Substorm Injections And Chorus Waves To The Rapid Outward Extension Of Electron Radiation Belt, Q. Zong, C A. Kletzing, W. S. Kurth, G. B. Hospodarsky, Harlan E. Spence, Geoffrey Reeves, H. O. Funsten, J. B. Blake, D. N. Baker

Physics & Astronomy

Abstract

We study the rapid outward extension of the electron radiation belt on a timescale of several hours during three events observed by Radiation Belt Storm Probes and Time History of Events and Macroscale Interactions during Substorms satellites and particularly quantify the contributions of substorm injections and chorus waves to the electron flux enhancement near the outer boundary of radiation belt. A comprehensive analysis including both observations and simulations is performed for the first event on 26 May 2013. The outer boundary of electron radiation belt moved from L = 5.5 to L > 6.07 over about 6 h, with up …


Does The Worsening Galactic Cosmic Radiation Environment Observed By Crater Preclude Future Manned Deep Space Exploration?, Nathan A. Schwadron, J. B. Blake, Anthony Case, Colin J. Joyce, Justin Kasper, J. E. Mazur, N. Petro, M. Quinn, Jamie A. Porter, Charles W. Smith, Sonya S. Smith, Harlan E. Spence, Lawrence W. Townsend, R. Turner, Jody K. Wilson, Cary Zeitlin Nov 2014

Does The Worsening Galactic Cosmic Radiation Environment Observed By Crater Preclude Future Manned Deep Space Exploration?, Nathan A. Schwadron, J. B. Blake, Anthony Case, Colin J. Joyce, Justin Kasper, J. E. Mazur, N. Petro, M. Quinn, Jamie A. Porter, Charles W. Smith, Sonya S. Smith, Harlan E. Spence, Lawrence W. Townsend, R. Turner, Jody K. Wilson, Cary Zeitlin

Physics & Astronomy

Abstract

The Sun and its solar wind are currently exhibiting extremely low densities and magnetic field strengths, representing states that have never been observed during the space age. The highly abnormal solar activity between cycles 23 and 24 has caused the longest solar minimum in over 80 years and continues into the unusually small solar maximum of cycle 24. As a result of the remarkably weak solar activity, we have also observed the highest fluxes of galactic cosmic rays in the space age and relatively small solar energetic particle events. We use observations from the Cosmic Ray Telescope for the …


Excitation Of Nightside Magnetosonic Waves Observedby Van Allen Probes, Qinghua Zhou, Fuliang Xiao, Chang Yang, Si Liu, C A. Kletzing, W. S. Kurth, G. B. Hospodarsky, Harlan E. Spence, Geoffrey Reeves, H. O. Funsten, J. B. Blake, D. N. Baker, J. R. Wygant Nov 2014

Excitation Of Nightside Magnetosonic Waves Observedby Van Allen Probes, Qinghua Zhou, Fuliang Xiao, Chang Yang, Si Liu, C A. Kletzing, W. S. Kurth, G. B. Hospodarsky, Harlan E. Spence, Geoffrey Reeves, H. O. Funsten, J. B. Blake, D. N. Baker, J. R. Wygant

Physics & Astronomy

Abstract

During the recovery phase of the geomagnetic storm on 30-31 March 2013, Van Allen Probe A detected enhanced magnetosonic (MS) waves in a broad range of L = 1.8-4.7 and magnetic local time (MLT) = 17-22 h, with a frequency range ∼10-100 Hz. In the meanwhile, distinct proton ring distributions with peaks at energies of ∼10 keV, were also observed in L = 3.2-4.6 and L = 5.0-5.6. Using a subtracted bi-Maxwellian distribution to model the observed proton ring distribution, we perform three-dimensional ray tracing to investigate the instability, propagation, and spatial distribution of MS waves. Numerical results show …


Fate Of The Bose Insulator In The Limit Of Strong Localization And Low Cooper-Pair Density In Ultrathin Films, Shawna M. Hollen, G. E. Fernandes, J. M. Xu, J M. Valles Jr. Oct 2014

Fate Of The Bose Insulator In The Limit Of Strong Localization And Low Cooper-Pair Density In Ultrathin Films, Shawna M. Hollen, G. E. Fernandes, J. M. Xu, J M. Valles Jr.

Physics & Astronomy

A Bose insulator composed of a low density of strongly localized Cooper pairs develops at the two-dimensional superconductor to insulator transition (SIT) in a number of thin film systems. Investigations of ultrathin amorphous PbBi films far from the SIT described here provide evidence that the Bose insulator gives way to a second insulating phase with decreasing film thickness. At a critical film thickness dc the magnetoresistance changes sign from positive, as expected for boson transport, to negative, as expected for fermion transport, signs of local Cooper-pair phase coherence effects on transport vanish, and the transport activation energy exhibits a kink. …


Interactions Of Energetic Electrons With Ulf Waves Triggered By Interplanetary Shock: Van Allen Probes Observations In The Magnetotail, Y. X. Hao, Q. G. Zong, Y. F. Wang, X. Z. Zhou, Hui Zhang, S. Y. Fu, Z. Y. Pu, Harlan E. Spence, J. B. Blake, J. Bonnell, J. R. Wygant, C A. Kletzing Oct 2014

Interactions Of Energetic Electrons With Ulf Waves Triggered By Interplanetary Shock: Van Allen Probes Observations In The Magnetotail, Y. X. Hao, Q. G. Zong, Y. F. Wang, X. Z. Zhou, Hui Zhang, S. Y. Fu, Z. Y. Pu, Harlan E. Spence, J. B. Blake, J. Bonnell, J. R. Wygant, C A. Kletzing

Physics & Astronomy

Abstract

We present in situ observations of a shock-induced substorm-like event on 13 April 2013 observed by the newly launched Van Allen twin probes. Substorm-like electron injections with energy of 30-500 keV were observed in the region from L∼5.2 to 5.5 immediately after the shock arrival (followed by energetic electron drift echoes). Meanwhile, the electron flux was clearly and strongly varying on the ULF wave time scale. It is found that both toroidal and poloidal mode ULF waves with a period of 150 s emerged following the magnetotail magnetic field reconfiguration after the interplanetary (IP) shock passage. The poloidal mode …


The Trapping Of Equatorial Magnetosonic Waves In The Earth’S Outer Plasmasphere, Q. Ma, W Li, L. Chen, R. M. Thorne, C A. Kletzing, W. S. Kurth, G. B. Hospodarsky, Geoffrey Reeves, M. G. Henderson, Harlan E. Spence Sep 2014

The Trapping Of Equatorial Magnetosonic Waves In The Earth’S Outer Plasmasphere, Q. Ma, W Li, L. Chen, R. M. Thorne, C A. Kletzing, W. S. Kurth, G. B. Hospodarsky, Geoffrey Reeves, M. G. Henderson, Harlan E. Spence

Physics & Astronomy

Abstract

We investigate the excitation and propagation of equatorial magnetosonic waves observed by the Van Allen Probes and describe evidence for a trapping mechanism for magnetosonic waves in the Earth's plasmasphere. Intense equatorial magnetosonic waves were observed inside the plasmasphere in association with a pronounced proton ring distribution, which provides free energy for wave excitation. Instability analysis along the inbound orbit demonstrates that broadband magnetosonic waves can be excited over a localized spatial region near the plasmapause. The waves can subsequently propagate into the inner plasmasphere and remain trapped over a limited radial extent, consistent with the predictions of near-perpendicular …


Deep Dielectric Charging Of Regolith Within The Moon's Permanently Shadowed Regions, Andrew P. Jordan, T. J. Stubbs, Jody K. Wilson, Nathan A. Schwadron, Harlan E. Spence, Colin J. Joyce Aug 2014

Deep Dielectric Charging Of Regolith Within The Moon's Permanently Shadowed Regions, Andrew P. Jordan, T. J. Stubbs, Jody K. Wilson, Nathan A. Schwadron, Harlan E. Spence, Colin J. Joyce

Physics & Astronomy

Abstract

Energetic charged particles, such as galactic cosmic rays (GCRs) and solar energetic particles (SEPs), can penetrate deep within the lunar surface, resulting in deep dielectric charging. This charging process depends on the GCR and SEP currents, as well as on the regolith's electrical conductivity and permittivity. In permanently shadowed regions (PSRs) near the lunar poles, the discharging timescales are on the order of a lunation (∼20 days). We present the first predictions for deep dielectric charging of lunar regolith. To estimate the resulting subsurface electric fields, we develop a data-driven, one-dimensional, time-dependent model. For model inputs, we use GCR …


Generation Of Unusually Low Frequency Plasmaspheric Hiss, Lunjin Chen, R. M. Thorne, J. Bortnik, Wen Li, Richard B. Horne, Geoffrey Reeves, C A. Kletzing, W. S. Kurth, G. B. Hospodarsky, Harlan E. Spence, J. B. Blake, Joseph F. Fennell Aug 2014

Generation Of Unusually Low Frequency Plasmaspheric Hiss, Lunjin Chen, R. M. Thorne, J. Bortnik, Wen Li, Richard B. Horne, Geoffrey Reeves, C A. Kletzing, W. S. Kurth, G. B. Hospodarsky, Harlan E. Spence, J. B. Blake, Joseph F. Fennell

Physics & Astronomy

Abstract

It has been reported from Van Allen Probe observations that plasmaspheric hiss intensification in the outer plasmasphere, associated with a substorm injection on 30 September 2012, occurred with a peak frequency near 100 Hz, well below the typical plasmaspheric hiss frequency range, extending down to ∼20 Hz. We examine this event of unusually low frequency plasmaspheric hiss to understand its generation mechanism. Quantitative analysis is performed by simulating wave raypaths via the HOTRAY ray tracing code with measured plasma density and calculating raypath-integrated wave gain evaluated using the measured energetic electron distribution. We demonstrate that the growth rate due …


Synthesis Of 3-D Coronal-Solar Wind Energetic Particle Acceleration Modules, Nathan A. Schwadron, Matthew J. Gorby, Tibor Torak, Cooper Downs, J. A. Linker, Roberto Lionello, Z. Mikic, P. Riley, Joe Giacalone, Benjamin D.G. Chandran, Kai K. Germaschewski, Philip A. Isenberg, Martin A. Lee, Noe E. Lugaz, Sonya S. Smith, Harlan E. Spence, M. Desai, J. C. Kasper, K. Kozarev, K. E. Korreck, M. L. Stevens, J. F. Cooper, Peter Macneice Jun 2014

Synthesis Of 3-D Coronal-Solar Wind Energetic Particle Acceleration Modules, Nathan A. Schwadron, Matthew J. Gorby, Tibor Torak, Cooper Downs, J. A. Linker, Roberto Lionello, Z. Mikic, P. Riley, Joe Giacalone, Benjamin D.G. Chandran, Kai K. Germaschewski, Philip A. Isenberg, Martin A. Lee, Noe E. Lugaz, Sonya S. Smith, Harlan E. Spence, M. Desai, J. C. Kasper, K. Kozarev, K. E. Korreck, M. L. Stevens, J. F. Cooper, Peter Macneice

Physics & Astronomy

1. Introduction Acute space radiation hazards pose one of the most serious risks to future human and robotic exploration. Large solar energetic particle (SEP) events are dangerous to astronauts and equipment. The ability to predict when and where large SEPs will occur is necessary in order to mitigate their hazards. The Coronal-Solar Wind Energetic Particle Acceleration (C-SWEPA) modeling effort in the NASA/NSF Space Weather Modeling Collaborative [Schunk, 2014] combines two successful Living With a Star (LWS) (http://lws. gsfc.nasa.gov/) strategic capabilities: the Earth-Moon-Mars Radiation Environment Modules (EMMREM) [Schwadron et al., 2010] that describe energetic particles and their effects, with the Next …


Radiation Environment At The Moon: Comparisons Of Transport Code Modeling And Measurements From The Crater Instrument, Jamie A. Porter, Lawrence W. Townsend, Harlan E. Spence, Michael J. Golightly, Nathan A. Schwadron, Justin Kasper, Anthony Case, J. B. Blake, Cary Zeitlin Jun 2014

Radiation Environment At The Moon: Comparisons Of Transport Code Modeling And Measurements From The Crater Instrument, Jamie A. Porter, Lawrence W. Townsend, Harlan E. Spence, Michael J. Golightly, Nathan A. Schwadron, Justin Kasper, Anthony Case, J. B. Blake, Cary Zeitlin

Physics & Astronomy

Abstract

The Cosmic Ray Telescope for the Effects of Radiation (CRaTER), an instrument carried on the Lunar Reconnaissance Orbiter spacecraft, directly measures the energy depositions by solar and galactic cosmic radiations in its silicon wafer detectors. These energy depositions are converted to linear energy transfer (LET) spectra. High LET particles, which are mainly high-energy heavy ions found in the incident cosmic ray spectrum, or target fragments and recoils produced by protons and heavier ions, are of particular importance because of their potential to cause significant damage to human tissue and electronic components. Aside from providing LET data useful for space …


Radiation Belt Electron Acceleration By Chorus Waves During The 17 March 2013 Storm, W. Li, R. M. Thorne, Q. Ma, B. Ni, J. Bortnik, D. N. Baker, Harlan E. Spence, Geoffrey Reeves, S. G. Kanekal, J. C. Green, C A. Kletzing, W. S. Kurth, G. B. Hospodarsky, J. B. Blake, Joseph F. Fennell, S. Claudepierre Jun 2014

Radiation Belt Electron Acceleration By Chorus Waves During The 17 March 2013 Storm, W. Li, R. M. Thorne, Q. Ma, B. Ni, J. Bortnik, D. N. Baker, Harlan E. Spence, Geoffrey Reeves, S. G. Kanekal, J. C. Green, C A. Kletzing, W. S. Kurth, G. B. Hospodarsky, J. B. Blake, Joseph F. Fennell, S. Claudepierre

Physics & Astronomy

Abstract

Local acceleration driven by whistler-mode chorus waves is fundamentally important for accelerating seed electron populations to highly relativistic energies in the outer radiation belt. In this study, we quantitatively evaluate chorus-driven electron acceleration during the 17 March 2013 storm, when the Van Allen Probes observed very rapid electron acceleration up to several MeV within ~12 hours. A clear radial peak in electron phase space density (PSD) observed near L* ~4 indicates that an internal local acceleration process was operating. We construct the global distribution of chorus wave intensity from the low-altitude electron measurements made by multiple Polar Orbiting Environmental …