Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

Series

University of Connecticut

University Scholar Projects

Biophysics

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Computational Investigations Into Binding Dynamics Of Tau Protein Antibodies: Using Machine Learning And Biophysical Models To Build A Better Reality, Katherine Lee Apr 2022

Computational Investigations Into Binding Dynamics Of Tau Protein Antibodies: Using Machine Learning And Biophysical Models To Build A Better Reality, Katherine Lee

University Scholar Projects

Misregulation of post-translational modifications of microtubule-associated protein tau is implicated in several neurodegenerative diseases including Alzheimer’s disease. Hyperphosphorylation of tau promotes aggregation of tau monomers into filaments which are common in tau-associated pathologies. Therefore, tau is a promising target for therapeutics and diagnostics. Recently, high-affinity, high-specificity single-chain variable fragment (scFv) antibodies against pThr-231 tau were generated and the most promising variant (scFv 3.24) displayed 20-fold increased binding affinity to pThr-231 tau compared to the wild-type. The scFv 3.24 variant contained five point mutations, and intriguingly none were in the tau binding site. The increased affinity was hypothesized to occur due …


Stability Of Norwalk Virus Capsid Protein Interfaces Evaluated By In Silico Nanoindentation, Prakhar Bansal May 2016

Stability Of Norwalk Virus Capsid Protein Interfaces Evaluated By In Silico Nanoindentation, Prakhar Bansal

University Scholar Projects

Studying the mechanical properties of viral capsids can give several insights into not only the lifecycle of the virus, but also into potential drug targets to thwart the progression of viral infection. Nanoindentation using an atomic force microscope is a useful technique for determining structural properties of small molecules and particles, and is commonly used to study viral capsids. This technique utilizes the probe of the microscope to push down on the capsid and record the forces along the indentation path. We ran this experiment in silico where we simulated the nanoindentation of Norwalk virus capsids using molecular dynamics. Running …