Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Selective Resistive Sintering: A Novel Additive Manufacturing Process, Austin Bryan Van Horn Dec 2016

Selective Resistive Sintering: A Novel Additive Manufacturing Process, Austin Bryan Van Horn

Graduate Theses and Dissertations

Selective laser sintering (SLS) is one of the most popular 3D printing methods that uses a laser to pattern energy and selectively sinter powder particles to build 3D geometries. However, this printing method is plagued by slow printing speeds, high power consumption, difficulty to scale, and high overhead expense. In this research, a new 3D printing method is proposed to overcome these limitations of SLS. Instead of using a laser to pattern energy, this new method, termed selective resistive sintering (SRS), uses an array of microheaters to pattern heat for selectively sintering materials. Using microheaters offers significant power savings, significantly …


Analytical Modeling Of A Novel Microdisk Resonator For Liquid-Phase Sensing: An All-Shear Interaction Device (Asid), Mohamad Sadegh Sotoudegan Jul 2016

Analytical Modeling Of A Novel Microdisk Resonator For Liquid-Phase Sensing: An All-Shear Interaction Device (Asid), Mohamad Sadegh Sotoudegan

Dissertations (1934 -)

Extensive research on micro/nanomechanical resonators has been performed recently due to their potential to serve as ultra-sensitive devices in chemical/biosensing. These applications often necessitate liquid-phase sensing, introducing significant fluid-induced inertia and energy dissipation that reduces the resonator’s performance. To minimize the detrimental fluid effects on such devices, a novel microdisk resonator supported by two tangentially-oriented, axially-driven “legs” is investigated analytically and effects of the system parameters on the resonator/sensor performance are explored. Since the device surface vibrates primarily parallel to the fluid-structure interface, it is referred to here as an “all-shear interaction device,” or ASID. Analytical modeling of the ASID …


Theory, Fabrication, And Experimentation Of Phononic Crystals In Mems At Micro/Nano Scale: Engineering Of Thermal And Rf Phonons To Applications In Thermoelectrics And Microresonators, Seyedhamidreza Alaie Feb 2016

Theory, Fabrication, And Experimentation Of Phononic Crystals In Mems At Micro/Nano Scale: Engineering Of Thermal And Rf Phonons To Applications In Thermoelectrics And Microresonators, Seyedhamidreza Alaie

Mechanical Engineering ETDs

Phononic Crystals (PnCs) are novel materials comprised of a periodic structure of inclusions in a matrix. This periodic arrangement creates phononic bandgaps, and modifies phononic bandstructures of a material. Such a property offers promising applications at the micro and nano scales to engineer acoustic filters, high Q-factor resonators, and thermoelectric properties of materials. Studying PnCs at the micro/nano scale requires specific characterization techniques, which rely on Micro Electro Mechanical Structures (MEMS). This work focuses on the study, and characterization of PnCs using MEMS in view of their prospective applications in thermoelectric materials, microresonators and acoustic filters, and also the prospective …