Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

Mechanical Engineering

Aluminum

Institution
Publication Year
Publication
Publication Type

Articles 31 - 60 of 71

Full-Text Articles in Entire DC Network

Fuzzy Logic Based Model For Predicting Surface Roughness Of Machined Al-Si-Cu-Fe Die Casting Alloy Using Different Additives-Turning Jan 2015

Fuzzy Logic Based Model For Predicting Surface Roughness Of Machined Al-Si-Cu-Fe Die Casting Alloy Using Different Additives-Turning

Faculty of Engineering University of Malaya

This paper presents a fuzzy logic artificial intelligence technique for predicting the machining performance of Al-Si-Cu-Fe die casting alloy treated with different additives including strontium, bismuth and antimony to improve surface roughness. The Pareto-ANOVA optimization method was used to obtain the optimum parameter conditions for the machining process. Experiments were carried out using oblique dry CNC turning. The machining parameters of cutting speed, feed rate and depth of cut were optimized according to surface roughness values. The results indicated that a cutting speed of 250 m/min, a feed rate of 0.05 mm/rev, and a depth of cut of 0.15 mm …


Influence Of Inner Surface Notch On Fatigue Crack Growth Characteristics Of Aluminum Alloy, Innovative Research Publications Irp India, Mahantesh. Matur, V. Krishnan, P. Dinesh Dec 2014

Influence Of Inner Surface Notch On Fatigue Crack Growth Characteristics Of Aluminum Alloy, Innovative Research Publications Irp India, Mahantesh. Matur, V. Krishnan, P. Dinesh

Innovative Research Publications IRP India

Effect of initial notch on the Fatigue crack growth of Aluminum 6061 specimen specified by ASTM is investigated. Growth rate obtained by experiment and numerical methods were compared. The values are in close agreement. The study shows the dependency of crack propagation on the stress intensity range of the Aluminum.


Surface Modification Of Aluminum Alloys By Plasma Electrolytic Oxidation, Vahid Dehnavi Aug 2014

Surface Modification Of Aluminum Alloys By Plasma Electrolytic Oxidation, Vahid Dehnavi

Electronic Thesis and Dissertation Repository

Plasma Electrolytic Oxidation (PEO) is a surface treatment for the production of ceramic oxide coatings with great properties, such as high wear and corrosion resistance, on metal substrates, particularly aluminum and magnesium alloys. Formation of PEO coatings involves complex processes and mechanisms that are difficult to study. Currently, the PEO process is in a transition phase from research to commercial application, with a primary focus on the corrosion and wear protection of light alloys, and has recently generated interest as a promising surface treatment for biomedical applications.

To justify the industrial application of PEO, a more systematic and in-depth study …


Fabrication And Enhancement Of Aluminum-Based Microchannel Devices, Paul Joseph Hymel Jan 2014

Fabrication And Enhancement Of Aluminum-Based Microchannel Devices, Paul Joseph Hymel

LSU Master's Theses

Microscale molding replication and transient liquid phase (TLP) bonding were used to fabricate Al-based microchannel heat exchangers (MHEs) and micro gas chromatograph (mGC) columns. Metal-based microchannel heat exchangers often experience corrosion as a result of their operating conditions. To address this problem, an internal anodization method was developed in Al microtubes by pulsing the flow of electrolyte through a microtube when the current dropped below a set value. The anodic aluminum oxide (AAO) films were characterized by scanning electron microscopy (SEM), focused ion beam (FIB) cross sections, and X-ray energy dispersive spectroscopy (EDS) to determine their growth rate and morphology. …


Corrosion Of Magnesium And Aluminum In Palm Biodiesel: A Comparative Evaluation Aug 2013

Corrosion Of Magnesium And Aluminum In Palm Biodiesel: A Comparative Evaluation

A.S. Md Abdul Haseeb

The present study aims to investigate the comparative corrosion of light-weight metals such as aluminum and magnesium in palm biodiesel. Immersion test at room temperature was carried out for each metal for 1440 h. Sample characterization techniques employed include weight loss measurement, SEM (scanning electron microscope), XRD (X-ray diffraction), TAN (total acid number) and FTIR (Fourier transform infrared spectroscopy). Results showed that the corrosion rate of magnesium was much higher compared to that of aluminum. The surface morphology revealed a significant difference between the biodiesel exposed aluminum and magnesium specimens. Upon exposure to biodiesel, the magnesium surface was found to …


Stress Enhanced Tio2 Nanowire Growth On Ti-6al-4v Particles By Thermal Oxidation Jan 2013

Stress Enhanced Tio2 Nanowire Growth On Ti-6al-4v Particles By Thermal Oxidation

A.S. Md Abdul Haseeb

Titanium dioxide (TiO2) nanowires were grown on Ti - 6wt% Al - 4wt% V (Ti64) particles by thermal oxidation. To investigate the effect of stress on nanowire growth, the particles were milled in a planetary ball mill prior to the thermal oxidation. Thermal oxidation of the Ti64 particles was carried out in a horizontal tube furnace in a controlled oxygen atmosphere in the temperature range of 700-900 °C. The oxygen concentration was varied from 20 ppm to 80 ppm in Ar atmosphere. Nanostructures were characterized by high resolution field emission scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. TiO2 …


The Wear Behavior Of Cross-Linked Uhmwpe Under Dry And Bovine Calf Serum-Lubricated Conditions Jan 2013

The Wear Behavior Of Cross-Linked Uhmwpe Under Dry And Bovine Calf Serum-Lubricated Conditions

A.S. Md Abdul Haseeb

The present study was performed to investigate the effects of gamma radiation on the wear behavior of unirradiated and irradiated ultra-high-molecular-weight polyethylene (UHMWPE) against Ti-6Al-4V under dry and lubricated conditions at different applied loads. The UHMWPE specimens were exposed directly to nominal doses of 0, 25, 40, 50, and 100 kGy. Scanning electron microscope (SEM) analysis of the worn surface of UHMWPE and Ti-6Al-4V was performed to understand the mechanism of wear involved between the contact surfaces during wear testing. From the wear test results, there were significant differences between the wear of unirradiated UHMWPE and UHMWPE irradiated at 25, …


Experimental Study On The Fabrication Of Advanced Materials For Energy Applications Using High Energy Mechanical Milling, Ashvin Kumar Narayana Swamy Jan 2013

Experimental Study On The Fabrication Of Advanced Materials For Energy Applications Using High Energy Mechanical Milling, Ashvin Kumar Narayana Swamy

Open Access Theses & Dissertations

The reaction of aluminum (Al) powder with water has the potential for on demand hydrogen generation. Conventional Al powders, however, react with water slowly due to a highly protective oxide layer on the particle surface. Current methods for Al activation involve harmful and expensive materials. The nano-scale Al powders also remain very expensive and have problems such as a large amount of oxide on the surface. The use of aluminum in an energy generation cycle is also hindered by the fact that, although Al is the most abundant metal in the Earth's crust, its recovery from ore consumes a lot …


The Wear Behavior Of Cross-Linked Uhmwpe Under Dry And Bovine Calf Serum-Lubricated Conditions Dec 2012

The Wear Behavior Of Cross-Linked Uhmwpe Under Dry And Bovine Calf Serum-Lubricated Conditions

A.S. Md Abdul Haseeb

The present study was performed to investigate the effects of gamma radiation on the wear behavior of unirradiated and irradiated ultra-high-molecular-weight polyethylene (UHMWPE) against Ti-6Al-4V under dry and lubricated conditions at different applied loads. The UHMWPE specimens were exposed directly to nominal doses of 0, 25, 40, 50, and 100 kGy. Scanning electron microscope (SEM) analysis of the worn surface of UHMWPE and Ti-6Al-4V was performed to understand the mechanism of wear involved between the contact surfaces during wear testing. From the wear test results, there were significant differences between the wear of unirradiated UHMWPE and UHMWPE irradiated at 25, …


Resonance Frequencies Of A Spherical Aluminum Shell Subject To Static Internal Pressure, Andrew A. Piacsek, Sami Abdul-Wahid, Robert Taylor May 2012

Resonance Frequencies Of A Spherical Aluminum Shell Subject To Static Internal Pressure, Andrew A. Piacsek, Sami Abdul-Wahid, Robert Taylor

All Faculty Scholarship for the College of the Sciences

Measurements of the vibrational response of a spherical aluminum shell subject to changes in the interior pressure clearly demonstrate that resonance frequencies shift higher as the pressure is increased. The frequency shift appears to be smaller for longitudinal modes than for bending wave modes. The magnitude of frequency shift is comparable to analytical predictions made for thin cylindrical shells. Changes in the amplitudes of resonance peaks are also observed. A possible application of this result is a method for noninvasively monitoring pressure changes inside sealed containers, including intracranial pressure in humans.


Degradation Of Automotive Materials In Palm Biodiesel Apr 2012

Degradation Of Automotive Materials In Palm Biodiesel

A.S. Md Abdul Haseeb

As compared to petroleum diesel, biodiesel is more corrosive for automotive materials. Studies on the characterization of corrosion products of fuel exposed automotive materials are scarce. Automotive fuel system and engine components are made from different ferrous and non-ferrous materials. The present study aims to investigate the corrosion products of different types of automotive materials such as copper, brass, aluminum and cast iron upon exposure to diesel and palm biodiesel. Changes in fuel properties due to exposure of different materials were also examined. Degradation of metal surface was characterized by digital camera, SEM/EDS and X-ray diffraction (XRD). Fuel properties were …


Die Attach Properties Of Zn-Al-Mg-Ga Based High-Temperature Lead-Free Solder On Cu Lead-Frame Jan 2012

Die Attach Properties Of Zn-Al-Mg-Ga Based High-Temperature Lead-Free Solder On Cu Lead-Frame

A.S. Md Abdul Haseeb

No abstract provided.


A Material System For Reliable Low Voltage Anodic Electrowetting, Mehdi Khodayari, Jose Carballo, Nathan B. Crane Jan 2012

A Material System For Reliable Low Voltage Anodic Electrowetting, Mehdi Khodayari, Jose Carballo, Nathan B. Crane

Faculty Publications

Electrowetting on dielectric is demonstrated with a thin spin-coated fluoropolymer over an aluminum electrode. Previous efforts to use thin spin-coated dielectric layers for electrowetting have shown limited success due to defects in the layers. However, when used with a citric acid electrolyte and anodic voltages, repeatable droplet actuation is achieved for 5000 cycles with an actuation of just 10 V. This offers the potential for low voltage electrowetting systems that can be manufactured with a simple low-cost process.


Investigation Of Aluminum Equation Of State Generation, Aaron Ward Oct 2011

Investigation Of Aluminum Equation Of State Generation, Aaron Ward

Master's Theses (2009 -)

There are many forms and methods to construct equations of state, EOSs. These methods are usually tailored for the particular problem of interest. Here, the EOSs of interest are those used in modeling shock responses. These EOSs cover a wide range of physical characteristics such as detonation and explosions, armor and anti-armor materials, and space structures protection. Aluminum will be the primary focus of this work. Aluminum was chosen because it has been studied in great length in the shock regime and is a common component in shock experiments and space type vehicles.


The Composition And Distribution Of Coal-Ash Deposits Under Reducing And Oxidizing Conditions From A Suite Of Eight Coals, David R. Brunner Apr 2011

The Composition And Distribution Of Coal-Ash Deposits Under Reducing And Oxidizing Conditions From A Suite Of Eight Coals, David R. Brunner

Theses and Dissertations

Eighteen elements, including: carbon, oxygen, sodium, magnesium, aluminum, silicon, phosphorus, sulfur, chlorine, potassium, calcium, titanium, chromium, manganese, iron, nickel, strontium, and barium were measured using a scanning electron microscope with energy dispersive spectroscopy from deposits. The deposits were collected by burning eight different coals in a 160 kWth, staged, down-fired, swirl-stabilized combustor. Both up-stream and down-stream deposits from an oxidizing region (equivalence ratio 0.86) and reducing region (equivalence ratio 1.15) were collected. Within the deposits, the particle size and morphology were studied. The average particle cross-sectional area from the up-stream deposits ranged from 10 - 75 µm2 and had a …


Combustion Of Lunar Regolith Mixed With Energetic Additives: Thermodynamic Calculations And Experimental Studies, Francisco Alvarez Jan 2011

Combustion Of Lunar Regolith Mixed With Energetic Additives: Thermodynamic Calculations And Experimental Studies, Francisco Alvarez

Open Access Theses & Dissertations

The future of space exploration will require longer missions in order to better understand the conditions of near-Earth celestial objects, like the Moon or Mars. Future space missions will require the development of goods, such as propulsion fuel and structural materials, produced using the extraterrestrial resources available. The area that develops these technologies is called In-Situ Resource Utilization (ISRU). ISRU allows reducing the payload, and as a consequence reduces the energy consumption and cost of space travel. The production of structural materials on the Moon can be accomplished using Self-Propagating High-Temperature Synthesis (SHS). This work describes the combination of ISRU …


Comparative Corrosive Characteristics Of Petroleum Diesel And Palm Biodiesel For Automotive Materials Oct 2010

Comparative Corrosive Characteristics Of Petroleum Diesel And Palm Biodiesel For Automotive Materials

A.S. Md Abdul Haseeb

Corrosive characteristics of biodiesel are important for long term durability of engine parts. The present study aims to compare the corrosion behavior of aluminum, copper and stainless steel in both petroleum diesel and palm biodiesel. Immersion tests in biodiesel (B100) and diesel (B0) were carried out at 80 °C for 1200 h. At the end of the test, corrosion characteristic was investigated by weight loss measurements and changes on the exposed metal surface. Surface morphology was examined by optical microscope and scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDS). Fuels were analyzed by using TAN analyzer, FTIR, GCMS and …


Fatigue Life Analysis Of T-38 Aileron Lever Using A Continuum Damage Approach, James D. Gyllenskog May 2010

Fatigue Life Analysis Of T-38 Aileron Lever Using A Continuum Damage Approach, James D. Gyllenskog

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

In a recent investigation conducted by the United States Air Force, the mechanical failure of the aileron lever, manufactured from 2014-T6 aluminum, caused the fatal mishap of a T-38 trainer aircraft. In general the locations of cracks are unknown and must be determined by simulation. In this study we propose to use a continuum damage modeling approach to determine the degradation and damage in a material as the number of cycles of loading increases. This approach successfully predicts the location of crack initiation, propagation path, and propagation rate. A stress-based model in conjunction with the successive initiation technique is utilized. …


Stress Intensity Factor Dependence Of Hg-Al Liquid Metal Embrittlement, Scott Keller Jan 2009

Stress Intensity Factor Dependence Of Hg-Al Liquid Metal Embrittlement, Scott Keller

Electronic Theses and Dissertations

When high strength aluminum alloys are subjected to liquid metals, physical and chemical reactions ensue resulting in what is known as liquid metal embrittlement (LME). A subset of environmentally-assisted cracking, LME is exhibited when a liquid metal, e.g. Hg or Ga, comes into intimate contact with a solid metal having significant susceptibility. As mechanical loads are applied, the interaction between the two metals results in a reduction in the flow properties of the solid metal. Several theories have been proposed to identify the underlying microstructural failure mechanism; however, none have been widely accepted, as failures can typically incorporate features common …


Mesoscale Behavior Of An Aluminum-Manganese Dioxide-Epoxy Mixture Under Shock Loading: From Milli To Nano-Sized Aluminum Particles, Andrew Fraser Jan 2009

Mesoscale Behavior Of An Aluminum-Manganese Dioxide-Epoxy Mixture Under Shock Loading: From Milli To Nano-Sized Aluminum Particles, Andrew Fraser

Master's Theses (2009 -)

The main focus of this thesis is to explore the dynamic shock compaction of multiple component mixtures, specifically Al-MnO2-Epoxy. This will be facilitated by initially simulating the bulk dynamic response in a mesoscale configuration and then comparing these results to experimental data. The mesoscale simulations were performed in the shock code CTH. The first section will discuss the matching of experimental data to computational results. With the goal of determining the bulk shock Hugoniot, a one-dimensional flyer plate configuration was created while using a grain-geometry imported from an scanning electron microscope (SEM) micrograph of the mixture. Both the …


Microstructural Characterization Of Diode Laser Deposited Ti-6al-4v, Tian Fu, Zhiqiang Fan, Syamala R. Pulugurtha, Todd E. Sparks, Jianzhong Ruan, Frank W. Liou, Joseph William Newkirk Aug 2008

Microstructural Characterization Of Diode Laser Deposited Ti-6al-4v, Tian Fu, Zhiqiang Fan, Syamala R. Pulugurtha, Todd E. Sparks, Jianzhong Ruan, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Laser Direct Metal Deposition (DMD) is an effective approach to manufacturing or repairing a range of metal components. The process is a layer-by-layer approach to building up a three dimensional solid object. The microstructure influences mechanical properties of the deposited parts. Thus, it is important to understand the microstructural features of diode laser deposited parts. This paper presents a microstructure analysis of a diode laser deposited Ti-6Al-4V onto a Ti-6Al-4V substrate. laser deposited parts. This paper presents a microstructure analysis of a diode laser deposited Ti-6Al-4V onto a Ti-6Al-4V substrate.


An Investigation Of Wear-Resistant Coatings On An A390 Die-Cast Aluminum Substrate, D. Adam Mower Mar 2007

An Investigation Of Wear-Resistant Coatings On An A390 Die-Cast Aluminum Substrate, D. Adam Mower

Theses and Dissertations

In this investigation, four coatings were tested for their ability to increase the wear life of A390 aluminum primary clutch sheaves used in continuously variable transmission (CVT). The coatings tested were: hard chrome, electroless nickel metal, hard coat anodizing and composite ceramic coating. The primary clutch sheave material is a die-cast A390 aluminum. A wear test stand was developed to duplicate wear found on CVTs currently in use. The wear was evaluated using four methods. First, the change in shift characteristics of the CVT while running on the wear test stand, second a change in performance using an ATV and …


A Torque Based Power Input Model For Friction Stir Welding, Jefferson W. Pew Dec 2006

A Torque Based Power Input Model For Friction Stir Welding, Jefferson W. Pew

Theses and Dissertations

For decades models have been developed for predicting the size of the weld nugget and heat affected zones in fusion welded structures. The basis for these models is the welding heat input, which is fairly well understood for most arc welding processes. However, this traditional approach is not as straightforward for Friction Stir Welding (FSW). To date, there is no definitive relationship to quantify the heat input for FSW. An important step to establish a heat input model is to identify how FSW process parameters affect weld power. This study details the relationship between FSW process parameters and torque for …


Effect Of Polymorphic Phase Transformations Within An Alumina Layer On The Ignition Of Aluminum Particles, Mikhaylo Aleksiyovych Trunov May 2006

Effect Of Polymorphic Phase Transformations Within An Alumina Layer On The Ignition Of Aluminum Particles, Mikhaylo Aleksiyovych Trunov

Dissertations

Experimental measurements of aluminum ignition temperature and models used to describe aluminum ignition are reviewed. It is shown that the current models cannot describe ignition of aluminum powders of different sizes and ignited under various experimental conditions. The properties of and phase changes occurring in the alumina scale existing on the surface of aluminum particles at different temperatures are systematically studied. The mechanism of aluminum oxidation is quantified and a new simplified ignition model is developed.

Thermogravimetry was used to study the oxidation of aluminum powders of various particle sizes and surface morphologies in oxygen at temperatures up to 1500°C. …


Utilization Of Ultrasonic Consolidation In Fabricating Satellite Decking, Joshua L. George May 2006

Utilization Of Ultrasonic Consolidation In Fabricating Satellite Decking, Joshua L. George

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

A fundamental investigation of the use of ultrasonic consolidation (UC) to produce deck panels for small satellites was undertaken. Several fabrication methods for producing structural panels and decking were analyzed. Because of its ability to create aluminum objects in an additive fashion, and at near-room temperatures, UC was found to be a powerful solution for creating highly integrated and modular satellite panels. It also allowed a lightweight and stiff deck to be fabricated without the use of adhesives.

A series of experiments were performed to understand the issues associated with creating a sandwich-type structure using UC. The experiments used a …


Grain Boundary Property Determination Through Measurement Of Triple Junction Geometry And Crystallography, Brent L. Adams, D. Casasent, M. Demirel, Bassem S. El-Dasher, D. Kinderlehrer, C. Liu, I. Livshits, F. Manolache, D. Mason, A. Morawiec, W. W. Mullins, S. Ozdemir, Gregory S. Rohrer, Anthony D. Rollett, David M. Saylor, Shlomo Ta'asan, A. Talukder, Chialin T. Wu, C. C. Yang, W. Yang Jan 2006

Grain Boundary Property Determination Through Measurement Of Triple Junction Geometry And Crystallography, Brent L. Adams, D. Casasent, M. Demirel, Bassem S. El-Dasher, D. Kinderlehrer, C. Liu, I. Livshits, F. Manolache, D. Mason, A. Morawiec, W. W. Mullins, S. Ozdemir, Gregory S. Rohrer, Anthony D. Rollett, David M. Saylor, Shlomo Ta'asan, A. Talukder, Chialin T. Wu, C. C. Yang, W. Yang

Faculty Publications

This work was supported primarily by the MRSEC program of the National Science Foundation under Award Number DMR-0079996. Microstructure controls the properties of most useful materials. Thus an ability to control microstructure through the processing of materials is a key to optimization of materials performance. Most materials are polycrystalline and their grain structure is a very important aspect of their microstructure. Thanks to their complexity there is a great variety of grain boundary types even in relatively isotropic materials such as the cubic metals. Simply describing the crystallography requires five (macroscopic) parameters (e.g. disorientation and inclination). Evidently, acquiring a knowledge …


An Investigation Of Improving Wear Of 390 Die-Cast Aluminum Through Hardcoat Anodizing, Michael J. Whiting Aug 2005

An Investigation Of Improving Wear Of 390 Die-Cast Aluminum Through Hardcoat Anodizing, Michael J. Whiting

Theses and Dissertations

The objectives of this research were to investigate the wear that occurs on the surface of a Hardcoat anodized die-cast aluminum surface, which was sliding against a composite rubber belt. This research investigated known wear theories and the results for previous testing to understand the mechanisms that were likely occurring in this application. These theories indicated that the wear occurring may be reduced by changing the hardness of the materials involved. Archard's equation gave tangible evidence of this fact, but related to the base material and not a surface coating. It was hypothesized that Hardcoat anodizing would follow the theory …


Experimental And Numerical Investigation Of Tool Heating During Friction Stir Welding, Joshua L. Covington Jul 2005

Experimental And Numerical Investigation Of Tool Heating During Friction Stir Welding, Joshua L. Covington

Theses and Dissertations

The heat input to the tool has been investigated for friction stir welding (FSW) of aluminum alloy AL 7075-T7351 over a wide range of process operating parameters using a combined experimental/numerical approach. In a statistical Design of Experiments fashion, 54 experimental welds (bead-on-plate) were performed at 27 different parameter combinations. Measured outputs during each of the welds included forces in all three coordinate directions and internal temperature of the rotating tool at three locations near the tool/workpiece interface. The heat input to the tool was also identified for each weld using infrared imaging temperature measurement techniques and the portion of …


Microstructure Design Of A Two Phase Composite Using Two-Point Correlation Functions, Brent L. Adams, H. Garmestani, G. Saheli Jan 2004

Microstructure Design Of A Two Phase Composite Using Two-Point Correlation Functions, Brent L. Adams, H. Garmestani, G. Saheli

Faculty Publications

This work has been funded under the AFOSR Grant no. F49620-03-1-0011 and Army Research Lab contract no. DAAD17-02-P-0398 and DAAD 19-01-1-0742. Two-point distribution functions are used here as to introduce "Microstructure Sensitive Design" in two-phase composites. Statistical distribution functions are commonly used for the representation of microstructures and also for homogenization of materials properties. The use of two-point statistics allows the composite designer to include the morphology and distribution in addition to the properties of the individual phases and components. Statistical continuum mechanics is used to make a direct link between the microstructure and properties (elastic and plastic) in terms …


Alum And Pacl Coagulation, Winarni Winarni Dec 2003

Alum And Pacl Coagulation, Winarni Winarni

Makara Journal of Technology

Alum and PACl Coagulation. Coagulation occurs by interaction of aluminum hydrolysis products with the contaminant such as colloidal particles. It is necessary to consider the different aluminum species that may present during specific conditions, since the mechanism of turbidity removal is dependent upon them. PACl consists of preformed aluminum hydrolysis products, which are stable below pH 6 and less sensitive than in situ hydrolysis product, alum. The benefits of PACl relative to alum have been investigated as a function of pH and Al dosages. Specific conditions and aluminum species that exist during the certain mechanisms of coagulation are discussed. Results …