Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 180

Full-Text Articles in Entire DC Network

Depressurization Characteristics Of Steam-Based Reciprocating Vacuum Pump, Hongling Deng Dec 2023

Depressurization Characteristics Of Steam-Based Reciprocating Vacuum Pump, Hongling Deng

Dissertations

This dissertation introduces a novel vacuum technology that leverages low-pressure saturated steam and cooling-controlled condensation, offering an efficient way to utilize low-grade thermal energy sources like waste heat, steam, or solar energy. At the heart of this technology is a unique duo-chamber vacuum pump system, featuring a reciprocating piston and a heat-conductive wall, designed to generate a vacuum through steam-condensation and cooling processes.

The core of this research lies in developing and validating mechanistic models for the steam-condensation depressurization process, a complex phenomenon involving phase change and transport mechanisms. Prior to this work, these mechanisms were not sufficiently modeled or …


Quantifying Balance: Computational And Learning Frameworks For The Characterization Of Balance In Bipedal Systems, Kubra Akbas Aug 2023

Quantifying Balance: Computational And Learning Frameworks For The Characterization Of Balance In Bipedal Systems, Kubra Akbas

Dissertations

In clinical practice and general healthcare settings, the lack of reliable and objective balance and stability assessment metrics hinders the tracking of patient performance progression during rehabilitation; the assessment of bipedal balance plays a crucial role in understanding stability and falls in humans and other bipeds, while providing clinicians important information regarding rehabilitation outcomes. Bipedal balance has often been examined through kinematic or kinetic quantities, such as the Zero Moment Point and Center of Pressure; however, analyzing balance specifically through the body's Center of Mass (COM) state offers a holistic and easily comprehensible view of balance and stability.

Building upon …


Importance Of Vegetation In Tsunami Mitigation: Evidence From Large Eddy Simulations With Fluid-Structure Interactions, Abhishek Mukherjee May 2023

Importance Of Vegetation In Tsunami Mitigation: Evidence From Large Eddy Simulations With Fluid-Structure Interactions, Abhishek Mukherjee

Dissertations

Communities worldwide are increasingly interested in nature-based solutions like coastal forests for the mitigation of coastal risks. Still, it remains unclear how much protective benefit vegetation provides, particularly in the limit of highly energetic flows after tsunami impact. The present thesis, using a three-dimensional incompressible computational fluid dynamics model with a fluid-structure interaction approach, aims to quantify how energy reflection and dissipation vary with different degrees of rigidity and vegetation density of a coastal forest.

In this study, tree trunks are represented as cylinders, and the elastic modulus of hardwood trees such as pine or oak is used to characterize …


Modeling Of Two-Dimensional And Biological Materials Towards Diverse Nano-Systems Applications, Jatin Kashyap Aug 2022

Modeling Of Two-Dimensional And Biological Materials Towards Diverse Nano-Systems Applications, Jatin Kashyap

Dissertations

This dissertation studies the demonstration of materials ranging from two-dimensional (2D) materials to small bio-molecules using various atomistic/molecular and sub-atomic particles (electron, hole, excitons) modeling techniques for multi-domain applications. Three categories of materials/systems are investigated as follows: 2D materials, biological materials, and complexes of 2D and biological materials.

The first problem demonstrates wrinkles' ubiquitous presence in two-dimensional materials significantly alters their properties. It is observed that water molecules, sourced from ambient humidity or transfer method, can get diffused in between Graphene and the substrate during the Graphene growth. The water diffusion causes/assists wrinkle formation in Graphene, which influences its properties. …


Investigation Of Topological Phonons In Acoustic Metamaterials, Wenting Cheng May 2022

Investigation Of Topological Phonons In Acoustic Metamaterials, Wenting Cheng

Dissertations

Topological acoustics is a recent and intense area of research. It merges the knowledge of mathematical topology, condensed matter physics, and acoustics. At the same time, it has been pointed out that quasiperiodicity can greatly enhance the periodic table of topological systems. Because quasiperiodic patterns have an intrinsic global degree of freedom, which exists in the topological space called the hull of a pattern, where the shape traced in this topological space is called the phason. The hull augments the physical space, which opens a door to the physics of the integer quantum Hall effect (IQHE) in arbitrary dimensions. In …


Design And Control Of Next-Generation Uavs For Effectively Interacting With Environments, Caiwu Ding May 2022

Design And Control Of Next-Generation Uavs For Effectively Interacting With Environments, Caiwu Ding

Dissertations

In this dissertation, the design and control of a novel multirotor for aerial manipulation is studied, with the aim of endowing the aerial vehicle with more degrees of freedom of motion and stability when interacting with the environments. Firstly, it presents an energy-efficient adaptive robust tracking control method for a class of fully actuated, thrust vectoring unmanned aerial vehicles (UAVs) with parametric uncertainties including unknown moment of inertia, mass and center of mass, which would occur in aerial maneuvering and manipulation. The effectiveness of this method is demonstrated through simulation. Secondly, a humanoid robot arm is adopted to serve as …


A Vacuum-Driven Distillation Technology Of Aqueous Solutions And Mixtures, Guo Guangyu Dec 2021

A Vacuum-Driven Distillation Technology Of Aqueous Solutions And Mixtures, Guo Guangyu

Dissertations

Distillation of aqueous solutions and aqueous mixtures has vast industrial applications, including desalination, wastewater treatment, and fruit juice concentration. Currently, two major distillation technologies are adopted in the industry, membrane separation and thermal distillation. However, both of them face certain inevitable drawbacks. Membrane separation has disadvantages as relying on high-grade energy, requiring membrane, fouling problem, narrow treatment range, limited scalability, and vibrating and noisy operating conditions. Traditional thermal distillation technologies can avoid above concerns but has other shortcomings, such as relatively low energy efficiency and yield rate, complicated and bulky system structure, and scaling problem.

This project proposes an innovative …


Electro-Chemo-Mechanics Of The Interfaces In 2d-3d Heterostructure Electrodes, Vidushi Sharma Dec 2021

Electro-Chemo-Mechanics Of The Interfaces In 2d-3d Heterostructure Electrodes, Vidushi Sharma

Dissertations

Unique heterostructure electrodes comprising two-dimensional (2D) materials and bulk three dimensional (3D) high-performance active electrodes are recently synthesized and experimentally tested for their electrochemical performance in metal-ion batteries. Such electrodes exhibit long cycle life while they also retain high-capacity inherent to the active electrode. The role of 2D material is to provide a supportive mesh that allows buffer space for volume expansions upon ion intercalation in the active material and establishes a continuous electronic contact. Therefore, the binding strength between both materials is crucial for the success of such electrodes. Furthermore, battery cycles may bring about phase transformations in the …


Electric Field Induced Self-Assembly Of Mesoscale Structured Materials And Smart Fluids, Suchandra Das May 2021

Electric Field Induced Self-Assembly Of Mesoscale Structured Materials And Smart Fluids, Suchandra Das

Dissertations

This dissertation aims to study the forces that drive self-assembly in binary mixtures of particles suspended in liquids and on fluid-liquid interfaces when they are subjected to a uniform electric or magnetic field. Three fluid-particle systems are investigated experimentally and theoretically : (i) Suspensions of dielectric particles in dielectric liquids; (ii) Suspensions of ferromagnetic and diamagnetic particles in ferrofluids; and (iii) Dielectric particles on dielectric fluid-liquid interfaces. The results of these studies are then used to estimate the parameter values needed to assemble materials with desired mesoscale microstructures.

The first fluid-particle system studied is an electrorheological (ER) fluid formed using …


Service Quality Assessment And Improvement Methods And Tools, Kevin M. Moriarty May 2021

Service Quality Assessment And Improvement Methods And Tools, Kevin M. Moriarty

Dissertations

The nucleus of this research concept and system is being applied to turret lathe and milling machine Computer Numerical Control (CNC) tool systems. The research has a generic application to the service of broad array of sophisticated computer controlled / integrated machines, devices / equipment such as industrial robotics, medical equipment, surgical robots, and similar types of engineered system. Quality design review for quality service systems is a unique concept. Standard product service systems are qualitative and subjective in nature. The quantitative system identifies Key Predictive Attributes (KPAs) and applies quantitative methods to these attributes to develop a systematic process …


Private Sound Environments In Public Space: Use Of Headphones In Public Parks And Public Transit, Chathurthi S. De Silva May 2021

Private Sound Environments In Public Space: Use Of Headphones In Public Parks And Public Transit, Chathurthi S. De Silva

Dissertations

The use of headphones is now so commonplace that it is almost second nature for many people to use them. Not only do these people use headphones all the time, but they use them nearly everywhere, including in urban public spaces. In using headphones, people create their own “private sound environments” in public space. This phenomenon merits attention from researchers since the creation of private sound environments may well alter people’s experiences of public space.

This study answers five research questions about the use of headphones in parks and on transit: why people use them, when they begin using headphones …


Investigation Of Topological Phonons In Discrete Mechanical Metamaterials, Kai Qian May 2021

Investigation Of Topological Phonons In Discrete Mechanical Metamaterials, Kai Qian

Dissertations

The study of topological mechanical metamaterials is a new emerging field that focuses on the topological properties of artificial mechanical structures. Inspired by topological insulators, topological mechanism has attracted intensive attention in condensed matter physics and successfully connected the quantum mechanical descriptions of electrons with the classical descriptions of phonons. It has led to experiments of mechanical metamaterials possessing topological characteristics, such as topologically protected conducting edges or surfaces without back-scattering. This dissertation presents a new experimental approach for mechanically engineering topological metamaterials based on patterning magnetically coupled spinners in order to localize the propagation of vibrations and evaluate different …


Human-Robot Interaction For Assistive Robotics, Jiawei Li Dec 2020

Human-Robot Interaction For Assistive Robotics, Jiawei Li

Dissertations

This dissertation presents an in-depth study of human-robot interaction (HRI) withapplication to assistive robotics. In various studies, dexterous in-hand manipulation is included, assistive robots for Sit-To-stand (STS) assistance along with the human intention estimation. In Chapter 1, the background and issues of HRI are explicitly discussed. In Chapter 2, the literature review introduces the recent state-of-the-art research on HRI, such as physical Human-Robot Interaction (HRI), robot STS assistance, dexterous in hand manipulation and human intention estimation. In Chapter 3, various models and control algorithms are described in detail. Chapter 4 introduces the research equipment. Chapter 5 presents innovative theories and …


Experiments And Modeling Of The Chemo-Mechanically Coupled Behavior Of Polymeric Gels, Nikola Bosnjak Dec 2020

Experiments And Modeling Of The Chemo-Mechanically Coupled Behavior Of Polymeric Gels, Nikola Bosnjak

Dissertations

Polymeric materials consist of mutually entangled or chemically crosslinked long njitmolecular chains which form a polymer network. Due to their molecular structure, the njitpolymeric materials are known to undergo large deformation in response to various njitenvironmental stimuli, such as temperature, chemical potential and light.

When a polymer network is exposed to a suitable chemical solvent, the solvent molecules are able to diffuse inside the network, causing it to undergo a large volumetric deformation, known as swelling. In addition to volumetric deformation, this process involves the chemical mixing of the polymer network and solvent molecules, and is typically environmentally responsive. A …


Blast Shock-Wave Characterization In Experimental Shock Tubes, Sudeepto Kahali Dec 2020

Blast Shock-Wave Characterization In Experimental Shock Tubes, Sudeepto Kahali

Dissertations

Blast-induced traumatic brain injuries have affected U.S. soldiers deployed for extended periods in the gulf and Afghanistan wars. To identify the biomechanical and biochemical mechanisms of injury, critical in the identification of diagnostic and therapeutic tools, compressed gas-driven shock tubes are used by investigators to study shockwave-animal specimen interactions and its biological consequences. However, shock tubes are designed and operated in a variety of geometry with a range of process parameters, and the quality of shock wave characteristics relevant to field conditions and therefore the study of blast-induced traumatic brain injuries suffered by soldiers is affected by those conditions. Lab-to-lab …


Resonant Triad Interactions In One And Two-Layer Systems, Malik Chabane Aug 2020

Resonant Triad Interactions In One And Two-Layer Systems, Malik Chabane

Dissertations

This dissertation is a study of the weakly nonlinear resonant interactions of a triad of gravity-capillary waves in systems of one and two fluid layers of arbitrary depth, in one and two-dimentions. For one-layer systems, resonant triad interactions of gravity-capillary waves are considered and a region where resonant triads can be always found is identified, in the two-dimensional wavevector angles-space. Then a description of the variations of resonant wavenumbers and wave frequencies over the resonance region is given. The amplitude equations correct to second order in wave slope are used to investigate special resonant triads that, providing their initial amplitude …


Compound Flooding In Coastal Areas Emanating From Inland And Offshore Events, Hamed Behzad Koochaksaraii May 2020

Compound Flooding In Coastal Areas Emanating From Inland And Offshore Events, Hamed Behzad Koochaksaraii

Dissertations

The vulnerability of urban populations to natural hazards and climate change is a major theme in many reports on coastal cities with flooding ranking highly among the climate change concerns. Flooding could occur as a result of runoff for inland rainfall that accumulates at the mouth of the estuary to the sea or it could occur due to a storm surge emanating from the ocean. The techniques for modeling the flooding from these events are very different, as they were developed in different scientific fields: hydrology and hydraulic engineering for inland rainfall versus coastal oceanography and coastal engineering for offshore …


Mechanical Characterization Of Animal Derived Starting Materials For Tissue Engineering, Bin Zhang May 2020

Mechanical Characterization Of Animal Derived Starting Materials For Tissue Engineering, Bin Zhang

Dissertations

Animal derived starting materials are well established in the production of Tissue Engineered Medical Devices. Porcine specifically can be found in products ranging in application from hernia repair to breast reconstruction. Although this material has been largely accepted in the Tissue Engineering industry, little is known of its material properties and mechanical characteristics. A review of the scientific literature describes limited mechanical measures only on uncontrolled research grade material. The objective of this work is to mechanically characterize porcine starting material used in the medical device industry. Porcine skin is provided by Midwest Research Swine, LLC (MRS) an established supplier …


Measurement Of Stresses And Their Effect On Transport In Thin Film Battery Electrodes, Subhajit Rakshit Aug 2019

Measurement Of Stresses And Their Effect On Transport In Thin Film Battery Electrodes, Subhajit Rakshit

Dissertations

At the moment, there is a significant push towards environmentally friendly energy production and gasoline-free transportation technologies. As a result, there is a renewed interest in energy storage devices such as lithium-ion batteries which will play a key role in providing energy storage capability for these applications. However, the current battery technology is reaching its limits and may not meet future energy storage demands. The increased demand and the limited lithium reserves in geographically remote areas of the earth will lead to higher cost of Li. The alternative battery technologies, such as sodium-ion batteries, are promising due to their low …


Epitaxial Growth Of Iii-Nitride Nanostructures And Their Optoelectronic Applications, Moab Rajan Philip May 2019

Epitaxial Growth Of Iii-Nitride Nanostructures And Their Optoelectronic Applications, Moab Rajan Philip

Dissertations

Light-emitting diodes (LEDs) using III-nitride nanowire heterostructures have been intensively studied as promising candidates for future phosphor-free solid-state lighting and full-color displays. Compared to conventional GaN-based planar LEDs, III-nitride nanowire LEDs exhibit numerous advantages including greatly reduced dislocation densities, polarization fields, and quantum-confined Stark effect due to the effective lateral stress relaxation, promising high efficiency full-color LEDs. Beside these advantages, however, several factors have been identified as the limiting factors for further enhancing the nanowire LED quantum efficiency and light output power. Some of the most probable causes have been identified as due to the lack of carrier confinement in …


Experimental And Numerical Characterization Of Multiphase Subsurface Oil Release, Feng Gao Dec 2018

Experimental And Numerical Characterization Of Multiphase Subsurface Oil Release, Feng Gao

Dissertations

Subsurface oil release is commonly encountered in the natural environment and engineering applications and has received the substantial attention of researchers after the disastrous Deepwater Horizon Blowout oil spill in 2009. The main focus on the present research is to systematically study the hydrodynamics of underwater oil jet under a variety of conditions, including the effect of dispersant and different gas to oil ratios (GOR) by using experimental measurement as well as a Computational Fluid Dynamics (CFD) approach, from which the measured turbulent characteristics (e.g., velocity, turbulent kinetic energy, turbulence dissipation rate, etc.) of underwater oil jet are thoroughly examined …


Experiments And Multi-Field Modeling Of Inelastic Soft Materials, Shuolun Wang May 2018

Experiments And Multi-Field Modeling Of Inelastic Soft Materials, Shuolun Wang

Dissertations

Soft dielectrics are electrically-insulating elastomeric materials, which are capable of large deformation and electrical polarization, and are used as smart transducers for converting between mechanical and electrical energy. While much theoretical and computational modeling effort has gone into describing the ideal, time-independent behavior of these materials, viscoelasticity is a crucial component of the observed mechanical response and hence has a significant effect on electromechanical actuation. This thesis reports on a constitutive theory and numerical modeling capability for dielectric viscoelastomers, able to describe electromechanical coupling, large- deformations, large-stretch chain-locking, and a time-dependent mechanical response. This approach is calibrated to the widely-used …


Kinetic Study Of Free Radical-Radical Reactions Of Combustion Importance At Elevated Pressures, Chao Yan May 2018

Kinetic Study Of Free Radical-Radical Reactions Of Combustion Importance At Elevated Pressures, Chao Yan

Dissertations

Combustion mechanisms consist of hundreds elementary reactions of free radicals and stable molecules. Radical-radical elementary reactions play important roles due to the high concentration in which free radicals are accumulated in combustion systems. Radical-radical reactions are typically multi-channel. Some of the channels might be of chain propagation or even chain branching nature, while other channels might be of chain termination nature. The relative importance of different channels is pressure dependent. Compared to radical-molecule reactions, radical-radical reactions are much less studied. This is due to the difficulties of well characterized quantitative production of radical species as well as due to the …


Microfluidic Biosensor With Functionalized Gold Nano Particles On Interdigitated Electrodes, Bharath Babu Nunna May 2018

Microfluidic Biosensor With Functionalized Gold Nano Particles On Interdigitated Electrodes, Bharath Babu Nunna

Dissertations

The integration of the microfluidics to the biosensor has growing demand with favorable conditions such as reduced processing time and low reagent consumption. The immuno biosensing with the microfluidic platform helped to make the electrochemical biosensing assays portable due to which this sensing mechanism can be easily implemented in point of care devices. The implementation of the biosensing in the microchannels significantly reduces the sample requirement form milli liter (mL) to micro liter (uL), and thus leads to low volume sample requirement during the sensing. The primary factors contributing to the microfluidic biosensors performance are probe immobilization, specific binding and …


Electric-Field Assisted Manipulation And Self-Assembly Of Particle Suspensions, Edison Chijioke Amah Apr 2018

Electric-Field Assisted Manipulation And Self-Assembly Of Particle Suspensions, Edison Chijioke Amah

Dissertations

The aim of this dissertation is to model the processes by which particles suspended in liquids and at liquid surfaces self-assemble when they are subjected to uniform and non-uniform electric fields. To understand the role of electric forces, three related problems were studied numerically and experimentally.

In the first problem, particles are assumed to be suspended inside a liquid and a nonuniform electric field is applied using electrodes mounted in the domain walls which causes positively polarized particles to collect in the regions where the electric field intensity is locally maximal and the negatively polarized particles collect in the regions …


Aerosol Transport By Coughing In A Depressurized And Air-Conditioned Chamber, Bo Zhang Oct 2017

Aerosol Transport By Coughing In A Depressurized And Air-Conditioned Chamber, Bo Zhang

Dissertations

Expiratory droplets from human coughing in an air-conditioned environment have always been considered to be potential carriers of pathogens, responsible for respiratory disease transmission. The air movement/circulation and ambient conditions such as pressure and temperature are all key factors of aerosol transport. To study the transmission of disease by human coughing in a depressurized air-conditioned chamber, there are many technical challenges, including the following: 1) the study of simulating human coughing; 2) the collection of aerosol generated by coughing; 3) the CFD simulation of coughing-induced aerosol transport in an air-conditioned chamber; 4) the validation of such a CFD simulation by …


Field Induced Assembly Of Particulate Systems, Kinnari Shah Oct 2017

Field Induced Assembly Of Particulate Systems, Kinnari Shah

Dissertations

The primary focus of the first part of this dissertation is to study the AC field-driven assembly of monodisperse silica and glass particles on liquid - liquid interface and forming a liquid film of uniform thickness having arrangement of particles on it. This liquid film with arrangement of regular particles can be converted into a solid film by curing top UV curable liquid. Here, electric field is used as a tool to facilitate AC field-driven assembly. The work describes the assembly of different size of regular particles and effective development of solid film.

It is also shown that particles of …


Study On The Dispersion Of Particles At A Fluid-Liquid Interface And Its Application In Hydrophilous Pollination, Naga Aditya Musunuri Jul 2017

Study On The Dispersion Of Particles At A Fluid-Liquid Interface And Its Application In Hydrophilous Pollination, Naga Aditya Musunuri

Dissertations

This dissertation work describes the physics of particle adsorption and the spontaneous dispersion of powders that occurs when they come in contact with a fluid-liquid interface and its application in hydrophilous pollination of Ruppia Maritima, an aquatic plant. The dispersion of particles can occur so quickly that it appears explosive, especially for small particles on the surface of mobile liquids like water. PIV (Particle Image Velocimetry) measurements show that the adsorption of a spherical particle at the interface causes an axisymmetric streaming flow about the vertical line passing through the particle center. The fluid directly below the particle rises upward, …


Fast Estimation Model Of Pressure-Temperature Response For Planning Focused Ultrasound Surgery, Tariq Mohammad Arif Jul 2017

Fast Estimation Model Of Pressure-Temperature Response For Planning Focused Ultrasound Surgery, Tariq Mohammad Arif

Dissertations

High Intensity Focused Ultrasound (HIFU) is becoming a widely accepted modality for extracorporeal non-invasive hyperthermia and surgical procedures. Since ultrasonic transducers need to operate in various challenging body locations, the arrangement of their array elements can be optimized to improve the capability of controlling focus intensity. In the first part of this dissertation, patterns of pressure field variations with several selected design variables (kerf, transducer element’s number and element’s width-height) are studied. These patterns indicate that there is a more suitable shape and arrangement of transducer elements in a specified area to achieve highest possible pressure. In order to obtain …


Gas-Solid Transport And Reaction Via Intervened Evaporating Sprays, Pengfei He May 2014

Gas-Solid Transport And Reaction Via Intervened Evaporating Sprays, Pengfei He

Dissertations

Fluid catalytic cracking (FCC) is a major process used for converting heavy oils to transportation fuels and light olefins. The gas-solid transport with reaction via intervened evaporating sprays in the FCC riser is specially important but complicated, with coupled mechanisms of chemical reaction and heat, momentum and mass transfer among multiple phases (liquid, solid and gas) in the restriction of wall boundary. Recent developments in FCC process models have progressed along two lines. One aims to develop composition-based kinetic models derived from molecular characterization of petroleum fractions while overlooking the hydrodynamic effect on local catalyst to oil ratio (CTO). The …