Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Polymer Chemistry

Theses/Dissertations

2020

Materials Science

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

I. Non-Degradable Polysiloxane Networks For Controlled Release Applications, And Ii. Additive Free, Degradable Silyl-Ether Furyl-Maleimide Networks, Caleb M. Bunton May 2020

I. Non-Degradable Polysiloxane Networks For Controlled Release Applications, And Ii. Additive Free, Degradable Silyl-Ether Furyl-Maleimide Networks, Caleb M. Bunton

Chemistry Theses and Dissertations

I. Two different series of non–degradable polysiloxane networks were prepared for the encapsulation and controlled release of a small molecule agent. For the first series, hydrosilylation was utilized to prepare networks of varying crosslink densities, as determined from swelling studies, from vinyl terminated and silylhydride functional poly(dimethyl)siloxanes. For the second series, the thiol-ene reaction was utilized to prepare networks of varying crosslink densities, as determined from swelling studies, from vinyl terminated and mercaptopropyl functional poly(dimethyl)siloxanes. Nile red dye was used as an encapsulated agent and dye release from each series of networks was measured using UV–vis spectroscopy to determine controllability …


Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell Jan 2020

Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell

CMC Senior Theses

Here, we present a method of gravity-drawing polydimethylsiloxane (PDMS) silicone fibers with application as fiber optics and as model foldamers. Beginning as a viscous liquid, PDMS is cured using heat until its measured viscosity reaches 4000 mPa•s. The semi-cured elastomer is then extruded through a tube furnace to produce thin (diameters on the order of hundred micrometers) filaments with scalable lengths. PDMS is biocompatible, gas-permeable, flexible, and hydrophobic. Additionally, the PDMS surface hydrophobicity can be modified via UV exposure, O2 plasma, and corona discharge. We demonstrate the patternibility (i.e patterns of hydrophobicity) of PDMS fibers, adding complexity to potential foldamer …