Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Polymer Chemistry

Theses/Dissertations

2020

Institution
Keyword
Publication

Articles 1 - 30 of 65

Full-Text Articles in Entire DC Network

Modeling Mass Transfer And Chemical Reaction In Industrial Nitrocellulose Manufacturing Processes, Francis Patrick Sullivan Dec 2020

Modeling Mass Transfer And Chemical Reaction In Industrial Nitrocellulose Manufacturing Processes, Francis Patrick Sullivan

Dissertations

A series of models are proposed to describe the production of military grade nitrocellulose from dense cellulose materials in mixtures of nitric acid, sulfuric acid, and water. This effort is conducted to provide a predictive capability for analyzing the rate and extent of reaction achieved under a range of reaction conditions used in the industrial nitrocellulose manufacturing process for sheeted cellulose materials. Because this capability does not presently exist, nitrocellulose producers have historically relied on a very narrow range of cellulose raw materials and resorted to trial and error methods to develop processing conditions for new materials. This tool enables …


Engineering Stimuli-Responsive Polymeric Nanoassemblies: Rational Designs For Intracellular Delivery Of Biologics, Kingshuk Dutta Dec 2020

Engineering Stimuli-Responsive Polymeric Nanoassemblies: Rational Designs For Intracellular Delivery Of Biologics, Kingshuk Dutta

Doctoral Dissertations

Biologic drugs have gained enormous research attention in recent years as reflected by the development of multiple candidates to the clinical pipelines and an increased percentage of FDA approval. This is reasoned by the fact that biologics have been proven to deliver more predictive and promising benefits for many hard-to-cure diseases by ‘drugging the undruggable’ targets. However, the challenges associated with biologic drug development are multi-fold, viz, poor encapsulation efficacy, systemic instability, low cellular internalization and endosomal escape capability. Thus, it is essential to develop new molecular strategies that can not only address the associated drug delivery challenges, but also …


Theory And Improved Methods For Probing The Cavitation To Fracture Transition, Christopher Barney Dec 2020

Theory And Improved Methods For Probing The Cavitation To Fracture Transition, Christopher Barney

Doctoral Dissertations

A material is considered soft when its bulk modulus is significantly greater than its shear modulus. Rubbery polymers are a class of soft materials where resistance to extension is mainly entropic in nature. Polymeric soft solids differ from liquids due to the presence of a percolated network of strong bonds that resist deformation and flow on a given time scale. The incompressible nature, entropically driven elasticity, and molecular scale network structure of soft polymeric solids combine to impart unique mechanical behavior that often results in complex material responses to simple loading situations. An important example of this is cavitation in …


Atom Transfer Radical Processes: From Catalyst Design To Polymer Synthesis, Characterization, And Application, Michael Novak Dec 2020

Atom Transfer Radical Processes: From Catalyst Design To Polymer Synthesis, Characterization, And Application, Michael Novak

Electronic Theses and Dissertations

Due to the toxicity of heavy metals and their prevalence in the environment there exists a need to develop highly active transition metal catalysts ultimately reducing the amount needed for chemical transformations. Additionally, there is interest in the scientific community for creating new materials that can remove these pollutants from industrial wastewater prior to its release into the environment. The work presented here focuses on the reduction and removal of heavy metals from industrial hazardous waste by designing novel highly active catalysts and developing polymeric adsorbents.

Highly active catalyst complexes consisting of novel hybrid ligands, 2-(dimethylamino)ethyl-bis-[2-(pyridylmethyl)amine] (M1-T2), and bis[2-(dimethylamino)ethyl]-2-(pyridylmethyl)amine (M2-T1), …


Functionalized Materials From Atom Transfer Radical Processes, Sean Fischer Dec 2020

Functionalized Materials From Atom Transfer Radical Processes, Sean Fischer

Electronic Theses and Dissertations

This work is focused on the synthesis, characterization, and application of functionalized materials prepared from atom transfer radical processes. Atom transfer radical processes encompass both atom transfer radical addition (ATRA) and polymerization (ATRP) reactions, both of which are catalyzed by ppm amounts of copper complexes. The synthetic efforts of ATRA include increasing adduct selectivity through optimization of reaction conditions to generate small molecules in high to moderate yields. ATRA provides retention of the halogen moiety, which is an attractive functional group that can be further modified with other transformations. Specifically, the copper-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC) allows for the realization …


Control Of Corrosion On Ss316l Using Surface Initiated Polymers, Alexander Rupprecht Dec 2020

Control Of Corrosion On Ss316l Using Surface Initiated Polymers, Alexander Rupprecht

Electronic Theses and Dissertations

Pitting corrosion is arguably one of the most destructive and dangerous forms of corrosion, resulting in damage to structures, the environment, and public health. In addition, damage caused to structures such as bridges, pipelines, and boats, corrosion also has a profound effect on the biomedical community. Implanted metallic devices (i.e., vascular stents and artificial joints) are prone to pitting corrosion caused by aggressive ions present in extracellular fluid. To provide a corrosion-resistant surface on SS316L, films of poly(styrene), poly(methyl acrylate), and poly(methyl methacrylate) were formed using surface-initiated atom transfer radical polymerization (SI-ATRP). The resulting hydrophobic polymer films had a fractional …


Synthesis Of Well-Defined Binary Mixed Brushes On 20 Nm Silica Nanoparticles And Asymmetrically End- Functionalized Semicrystalline Poly(Ε-Caprolactone)S, Andrew J. Chancellor Dec 2020

Synthesis Of Well-Defined Binary Mixed Brushes On 20 Nm Silica Nanoparticles And Asymmetrically End- Functionalized Semicrystalline Poly(Ε-Caprolactone)S, Andrew J. Chancellor

Masters Theses

Well-defined polymers and polymer brushes play an important role in the understanding of their behavior under various conditions and in the fabrication of nanostructured functional materials. This Master’s thesis work focuses the synthesis of two well-defined systems: binary mixed homopolymer brushes grafted on 20 nm silica nanoparticles (NPs) for understanding their microphase separation behavior and asymmetrically end-functionalized semicrystalline poly(- caprolactone) polymers for use in the fabrication of multicomponent polymer brushes on flat substrates with various architectures. While theoretical and simulation studies have revealed intriguing morphologies of mixed homopolymer brushes grafted on nanospheres with a size similar to those of grafted …


Practical Adhesion Measurements In Organic Coatings; Advancing Understanding And Mechanical Methods Development, Diana Gottschalk Dec 2020

Practical Adhesion Measurements In Organic Coatings; Advancing Understanding And Mechanical Methods Development, Diana Gottschalk

Dissertations

“Adhesion” can be considered either a mechanical or chemical phenomenon. The mechanical interpretation describes the difficulty of separating surfaces and is useful for quantifying performance within applications that depend on bulk and interfacial properties. Chemical adhesion describes interfacial resistance to chemical attack and does not depend on bulk properties. Predicting chemical failure through mechanical measurement is confounded by the influence of bulk properties. However, the prospect is attractive because of the robust tolerance for sample geometries, allowing experiments to resemble an end-use system. The present work's primary goal was to elevate mechanical methods to provide a detailed interfacial characterization of …


Self-Immolative Polymers As A Degradable And Triggerable Class Of Surfactants, Siamak Keshtpour Nov 2020

Self-Immolative Polymers As A Degradable And Triggerable Class Of Surfactants, Siamak Keshtpour

Electronic Thesis and Dissertation Repository

Self-immolative polymers (SIPs) are degradable polymers that undergo end-to-end depolymerization upon triggering. They have potential for the development of degradable surfactants addressing human and environmental toxicity concerns associated with non-degradable surfactants, but they have not yet been investigated as surfactants. Herein, polyglyoxylamide SIPs with different pendent groups and end-caps were synthesized, envisioning they could serve as depolymerizable analogues of poly(vinyl alcohol) and its derivatives. Polyglyoxylamides with pendent hydroxyls stabilized both PEA and PLA particle suspensions. They showed the potential to undergo triggered degradation, resulting in destabilization of the suspensions. However, untriggered suspensions exhibited poor long-term stability, so further structural tuning …


Structure And Dynamics Of Phospholipid Vesicles And The Dependence On Nanoscale Interactions With Molecules Of Varying Complexity, Lakshapathy Widanelage Judith Upeka De Mel Nov 2020

Structure And Dynamics Of Phospholipid Vesicles And The Dependence On Nanoscale Interactions With Molecules Of Varying Complexity, Lakshapathy Widanelage Judith Upeka De Mel

LSU Doctoral Dissertations

In this dissertation, molecular interactions and changes imposed by nano-scale structures on phospholipid vesicles were investigated. 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) large unilamellar vesicles (LUVs) were used as the model system. Understanding changes of the bilayer structure, interfacial properties, lipid dynamics, and self-assembly, allows bridging relationships between biological cell membrane structure and dynamics to cellular functionalities. For example, membrane curvature changes are linked to membrane protein functions, although the exact mechanisms of control are not yet understood. Moreover, the knowledge gained from vesicle models allows exploring novel strategies for drug delivery applications. To achieve this, DOPC LUVs were synthesized and characterized by a …


Synthesis And Investigation Of Amphiphilic Polypeptoids For Environmental And Biological Applications, Tianyi Yu Nov 2020

Synthesis And Investigation Of Amphiphilic Polypeptoids For Environmental And Biological Applications, Tianyi Yu

LSU Doctoral Dissertations

Polypeptoids are an emerging class of peptidomimetic polymers featuring N-substituted polyglycine backbones. Polypeptoids are cyto-compatible and backbone degradable, making them appealing to many biological applications. When the highly polar polyamide backbone is coupled with non-polar aliphatic side chains, polypeptoids can be considered as facial amphiphiles. Without extensive hydrogen bonding along the backbone, the conformation of polypeptoid is largely controlled by the N-substituent structures. The hydrophobicity-lipophilicity balance of polypeptoids can be readily tuned with the N-substituent structures as well as the molar ratio between the hydrophilic and hydrophobic segments in their copolymers. In view of these combined attributes, …


Development Of A Route To Functional Polymers Via Click Chemistry, Kyle Classen Oct 2020

Development Of A Route To Functional Polymers Via Click Chemistry, Kyle Classen

Electronic Thesis and Dissertation Repository

Functional polymers are desirable due to their use in applications such as drug delivery and bioimaging. This work describes the development of a functional polymer template, expanding upon current routes to creating functional polymer libraries. The methodology utilizes a masking-unmasking strategy to protect and then reveal a strained alkyne for the introduction of functional entities via post-polymerization modification.

The synthesis and characterization by high-resolution mass spectrometry as well as 1H NMR, UV-Vis, and FT-IR spectroscopy of a masked strained alkyne monomer is presented. First, the strained alkyne, masked by a cyclopropenone moiety, was synthesized. Next, a norbornene derivative was …


Synthesis Of Stable Organic Radical Homo- And Co-Polymers And Their Applications In Solid-State Devices, Michael Anghel Oct 2020

Synthesis Of Stable Organic Radical Homo- And Co-Polymers And Their Applications In Solid-State Devices, Michael Anghel

Electronic Thesis and Dissertation Repository

This thesis outlines the synthesis and characterization of a stable organic radical homopolymer incorporating nitronyl nitroxide radicals, as well as the synthesis and characterization of random and block co-polymers incorporating nitronyl nitroxide and 6-oxoverdazyl radicals.

The nitronyl nitroxide homopolymer was synthesized using ring-opening metathesis polymerization (ROMP), yielding polymers with controlled molecular weights and narrow molecular weight distributions. Studies of polymer growth as a function of time and monomer:catalyst ratio revealed the ROMP to be well-behaved. Spectroscopic analysis of the polymer showed that the radicals possessed high radical content, indicating that they are tolerated by ROMP. Conductivity studies of thin-films made …


Peo-Ppo-Peo Surfactant Mixtures As Templates For Silicas With Very Large Cylindrical Mesopores At Ambient Temperature And With Helical Mesopores At Sub-Ambient Temperature, Laurance Beaton Sep 2020

Peo-Ppo-Peo Surfactant Mixtures As Templates For Silicas With Very Large Cylindrical Mesopores At Ambient Temperature And With Helical Mesopores At Sub-Ambient Temperature, Laurance Beaton

Dissertations, Theses, and Capstone Projects

The original research described herein concerns the synthesis of mesoporous silicas through a surfactant-templating method. The approach taken involved the use of a mixed surfactant system of two poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) surfactants, with one of the copolymers containing a much larger percentage of hydrophobic (PPO) blocks than the employed co-surfactant. Systematic adjustments of experimental parameters initially enabled the preparation of 2-D hexagonally ordered mesoporous silicas (SBA-15) of uncommonly large pore diameter at ambient temperature. Comparable silica was synthesized with and without temperature control. Additional adjustments to experimental parameters, including reduction of the relative amount of framework precursor used in …


Rheological Studies Of Fully-Formulated Coatings Thickened With Heur: Effects Of Surfactants, Brandon M. Bonilla Sep 2020

Rheological Studies Of Fully-Formulated Coatings Thickened With Heur: Effects Of Surfactants, Brandon M. Bonilla

Master's Theses

Rheology modifiers such as hydrophobically-modified ethoxylated urethane (HEUR)thickeners are included in waterborne latex coatings to optimize shear-rate dependent viscosity and other rheological properties. While these HEUR polymers are commonly used in industry, the complex chemical interactions that contribute to rheological properties are still not completely understood. Prior work in this area has focused on understanding latex-HEUR and latex-surfactant-HEUR interactions that affect rheological properties. Additionally, studies have been previously conducted to understand the relaxation mechanisms of complex interactions present in HEUR-thickened waterborne latex coatings under various dynamic conditions. The objective of this work is to extend the experimental work to fully-formulated …


Pressure Driven Desalination Utilizing Nanomaterials, Fangyou Xie Sep 2020

Pressure Driven Desalination Utilizing Nanomaterials, Fangyou Xie

Master's Theses

Nanomaterials such as graphene oxide and carbon nanotubes, have demonstrated excellent properties for membrane desalination, including decrease of maintenance, increase of flux rate, simple solution casting, and impressive chemical inertness. Here, two projects are studied to investigate nanocarbon based membrane desalination. The first project is to prepare hybrid membranes with amyloid fibrils intercalated with graphene oxide sheets. The addition of protein amyloid fibrils expands the interlayer spacing between graphene oxide nanosheets and introduces additional functional groups in the diffusion pathways, resulting in increase of flux rate and rejection rate for the organic dyes. Amyloid fibrils also provide structural assistance to …


Providing Insight To Enable The Design Of Tailored, Nano-Structured Polymeric Surfaces And Interfaces, Onome J. Agori-Iwe Aug 2020

Providing Insight To Enable The Design Of Tailored, Nano-Structured Polymeric Surfaces And Interfaces, Onome J. Agori-Iwe

Doctoral Dissertations

Methods are presented for modifying polymeric material surfaces using: 1) selective surface segregation in binary branched/linear polymer blends, and 2) surface functionalization with polymer brushes. Using neutron reflectivity, elastic recoil detection, and other complementary techniques, the aim was to identify structure-property relationships and provide fundamental insight into the time evolution and formation of surfaces and interfaces in these materials.

In blends of poly(styrene) (PS) HyperMacs and DendriMacs in a linear deuterated PS (d-PS) matrix, smaller hyperbranched additives (<1E6 g/mol) move slower than their linear analogues. Larger (>1E6 g/mol) and less flexible hyperbranched additives with smaller fractal dimensions move faster than their linear analogues, suggesting that they are less …


Dually Responsive Shape-Changing Linear And Star Molecular Bottlebrushes With Bicomponent Side Chains, Ethan Wesley Kent Aug 2020

Dually Responsive Shape-Changing Linear And Star Molecular Bottlebrushes With Bicomponent Side Chains, Ethan Wesley Kent

Doctoral Dissertations

Molecular bottlebrushes (MBBs) can exhibit large conformational changes from wormlike to globular in solution in response to environmental stimuli. However, the instability of the collapsed state has prevented shape-changing MBBs from potential applications in, e.g., biomimetic catalysis and substance delivery. This dissertation work focused on dually responsive linear and star MBBs composed of bicomponent side chains in the form of either homografted diblock copolymer or binary heterografted polymeric side chains. When one polymer component collapsed, driving the shape changing of MBBs, another component served as a stabilizer. When both components in the side chains were stimuli-responsive, an additional level of …


(Pseudo)Phase Tuning In The Service Of Synthesis: Technologies For Sustainable Catalysis., Justin Douglas Smith Aug 2020

(Pseudo)Phase Tuning In The Service Of Synthesis: Technologies For Sustainable Catalysis., Justin Douglas Smith

Electronic Theses and Dissertations

Strategies for manipulation of chemical phases were explored with emphasis on synthetic chemistry applications. Some strategies are fairly divergent from their origin, but all ultimately began from investigations of micellar media. Accordingly, Chapter 1 reviews the historical development of micellar catalytic processes. Chapters 2 and 3 detail development of synthetic methods in micellar solutions of designer surfactant PS-750-M. PS-750-M was designed to create benign micellar solutions which effectively mimic toxic organic solvents; it contains a proline-based linker between its hydrophobic and hydrophilic regions which imparts increased polarity to the micellar core. Chapter 2 details an interfacial nucleophilic substitution of perfluoroarenes …


Antibacterial Coatings Derived From Novel Chemically Responsive Vesicles, Emily B. Mobley Aug 2020

Antibacterial Coatings Derived From Novel Chemically Responsive Vesicles, Emily B. Mobley

Master's Theses

In order for a drug, or any material used for the purpose of eliciting a change in an organisms’ physical or chemical state, to be effective it must reach the intended target intact and for a sustained rate over time. Drug delivery systems encapsulate a drug to protect it from degradation, prevent side reactions, increase solubility, improve accumulation rates at target sites, and release drugs at a controlled rate. Controlled and sustained release of drugs is achieved by degradation of the carrier triggered by breaking dynamic chemical bonds caused by changes in the chemical environment such as pH or redox …


Thiophene Derivative Monomers Co-Electropolymerized On Microelectrodes Within Arrays For Tailored Surface Chemistry And Electrochemical Properties, Benjamin J. Jones Jul 2020

Thiophene Derivative Monomers Co-Electropolymerized On Microelectrodes Within Arrays For Tailored Surface Chemistry And Electrochemical Properties, Benjamin J. Jones

Graduate Theses and Dissertations

Potentiodynamic co-electropolymerization of two thiophene derivatives, (2,3-dihydrothieno[3,4-b]dioxin-2-yl)methanol (1) and 4-((2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)-methoxy)-4-oxobutanoic acid (2), in aqueous solutions (0.02 M total monomer, 0.05 M sodium dodecyl sulfate (SDS) and 0.1 M LiClO4) on gold microband electrodes in an array was investigated. A modified Steglich esterification reaction between monomer 1 and succinic anhydride produced monomer 2 at 93.6% yield. Seven deposition solutions of the two monomers, defined by mol% of monomer 2 (0, 25, 34, 50, 66, 75, 100) generated seven sets of polymer films by cyclic voltammetry in a specially designed cell to conserve monomer. The onset potential for monomer oxidation and total …


Effect Of Polymer Design And Coating Formulation On The Water Uptake And Sensitivity Of Acrylic Water-Borne Films, William Z. Thompson Jun 2020

Effect Of Polymer Design And Coating Formulation On The Water Uptake And Sensitivity Of Acrylic Water-Borne Films, William Z. Thompson

Master's Theses

Water-borne latex coatings represent a safer, more user-friendly, and environmentally responsible alternative to solvent-borne coatings, and are growing in popularity each year. However, these coatings often exhibit unfavorable performance when exposed to water for extended periods of time. This prolonged exposure often results in water uptake, which may give rise to other detrimental effects such as a decrease in modulus, blushing or water-whitening, reduced serviceable life, and softening of the film. In this study, various polymer composition latex design spaces are studied to develop an understanding of how water uptake can be modulated and minimized using common synthetic approaches. Factors …


Altering An Epoxy-Amine Thermoset's Performance Through Varying Mix Ratios, Kiersten M. Smith Jun 2020

Altering An Epoxy-Amine Thermoset's Performance Through Varying Mix Ratios, Kiersten M. Smith

Master's Theses

Epoxy resins are used in a number of different industries and therefore have application-specific material requirements, from satellites that require materials that operate in space, to paints and coatings that require high scratch resistance and mechanical durability, to medical devices, designed to be in continuous contact with biological fluids. Commercial epoxy products come with manufacturer’s information explaining the epoxy properties and recommended preparation processing conditions, which may include epoxy resin to curing agent mix ratio (Part A : Part B), cure time, and cure temperature, for example. Due to proprietary reasons, it can be difficult to understand why these values …


I. Non-Degradable Polysiloxane Networks For Controlled Release Applications, And Ii. Additive Free, Degradable Silyl-Ether Furyl-Maleimide Networks, Caleb M. Bunton May 2020

I. Non-Degradable Polysiloxane Networks For Controlled Release Applications, And Ii. Additive Free, Degradable Silyl-Ether Furyl-Maleimide Networks, Caleb M. Bunton

Chemistry Theses and Dissertations

I. Two different series of non–degradable polysiloxane networks were prepared for the encapsulation and controlled release of a small molecule agent. For the first series, hydrosilylation was utilized to prepare networks of varying crosslink densities, as determined from swelling studies, from vinyl terminated and silylhydride functional poly(dimethyl)siloxanes. For the second series, the thiol-ene reaction was utilized to prepare networks of varying crosslink densities, as determined from swelling studies, from vinyl terminated and mercaptopropyl functional poly(dimethyl)siloxanes. Nile red dye was used as an encapsulated agent and dye release from each series of networks was measured using UV–vis spectroscopy to determine controllability …


Effect Of Post-Consumer Content And Bioplastic Incorporation On Polymeric Resin In Consumer Applications, Shelby Bicknell May 2020

Effect Of Post-Consumer Content And Bioplastic Incorporation On Polymeric Resin In Consumer Applications, Shelby Bicknell

Electronic Theses & Dissertations

Controversy surrounds the use of plastic products, primarily due to their potentially negative impact on the environment at the end of their lifecycle. The most widely used plastics are manufactured from petrochemicals such as petroleum, coal or natural gas. Petrochemical plastics are not able to readily breakdown in the environment, which aggravates the existing pollution problems. Fortunately, there are eco-friendly alternatives to petrochemical-based plastics. Bioplastics may be derived from renewable sources, biodegradable, or both. Bio-based plastics are plastics that may be derived from renewable biomass sources including, but not limited to, vegetable oils, cornstarch, straw, woodchips, and food waste. They …


Synthesis Of Polyethylene Glycol - Trifluoromethyl Sulfonamide And Analysis Of Its Ion-Transport Properties, Andrew Groneck May 2020

Synthesis Of Polyethylene Glycol - Trifluoromethyl Sulfonamide And Analysis Of Its Ion-Transport Properties, Andrew Groneck

Honors Theses

This project investigates the synthetic pathway to develop a polyethylene glycol – trifluoromethyl sulfonamide compound to be used as an electrolyte in a proton exchange membrane fuel cell. The inspiration to develop a trifluoromethyl sulfonamide compound tethered to a polyethylene glycol polymer was inspired by the work of David P. Siska and D. F. Shriver in their studies of polysiloxane – trifluoromethyl sulfonamide electrolytes.

In this thesis, I have developed the synthesis of MePEG7-Trifluoromethyl sulfonamide (MePEG7-NHSO2CF3) from monomethylpolyethylene glycol (MePEG7OH). Unfortunately, due to the COVID-19 pandemic, I was unable to complete the depronation and ion-exchange to the Li+ and H+ …


The Synthesis Of A Mepeg-Based Hydroxide Conducting Electrolyte And The Optimization Of The Mepeg-Tosylation Reaction, Andrew Ladner May 2020

The Synthesis Of A Mepeg-Based Hydroxide Conducting Electrolyte And The Optimization Of The Mepeg-Tosylation Reaction, Andrew Ladner

Honors Theses

As society is becoming increasingly aware of the effects of climate change and the ever-looming threat of a fuel shortage, exploring green and renewable alternative energy production, such as fuel cells, is paramount. This project investigates the synthesis of a polyethylene glycol monomethyl ether (MePEGn) based polymer as well as the optimization of the MePEG Tosylation reaction. The MePEG explored contains seven polymerized ethoxy groups (MePEG7). The MePEG7 polymer was modified by substituting a positively-charged trimethylamine group in the place of the alcohol functional group at the end of the PEG chain. The reason for …


Polysaccharide And Silver Nanoparticles Based Hydrogels, Porous Materials, And Sensors, Muhammad R. Hossen May 2020

Polysaccharide And Silver Nanoparticles Based Hydrogels, Porous Materials, And Sensors, Muhammad R. Hossen

Electronic Theses and Dissertations

Cellulose based hydrogels and porous materials are gaining significant attention across a wide range of applications due to the natural abundance, biodegradability and physicochemical tunability of this polysaccharide. Cellulose nanofibrils (CNF) outperform cellulose fibers in terms of physicochemical tunability since CNF possess relatively high surface area. However, superior dispersibility of CNF in aqueous phase makes it challenging for traditional methods to dewater CNF suspensions to fabricate robust hydrogels and porous materials. In this dissertation, a novel scalable capillary based method to dewater CNF suspensions is invented as well as CNF hydrogels and porous materials with a broad range of porosity …


Investigation On The Morphology Of Charge-Transfer Complexes In Low Density Polyethylene, Wade Korf May 2020

Investigation On The Morphology Of Charge-Transfer Complexes In Low Density Polyethylene, Wade Korf

Master's Theses

Fillers are used ubiquitously throughout the fields of polymer and material science to overcome many inherent limitations to polymeric materials (i.e. poor stiffness or strength) and to expand their potential applications. There is a need to develop controllable particle architectures to better understand fundamental structure-property relationships in particle reinforced polymer composites. Charge-transfer complexes (CTCs) can assemble in situ into various needle and dendritic shapes via simple fabrication processes and at low loading levels. In this study, the effect of tetrathiafulvalene (TTF) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) CTC crystallites of various shapes and sizes on composite mechanical properties was investigated in an LDPE …


Thiol-Ene Click Chemistry For Solid State Triplet-Triplet Annihilation Upconversion And Parts-Per-Billion Pyrophosphate Sensing In Artificial Seawater, Abagail K. Williams May 2020

Thiol-Ene Click Chemistry For Solid State Triplet-Triplet Annihilation Upconversion And Parts-Per-Billion Pyrophosphate Sensing In Artificial Seawater, Abagail K. Williams

Master's Theses

Thiol-ene click chemistry is a robust approach to molecularly engineering polymers for many applications. Within this work, thiol-ene click chemistry is used to fabricate thiol-ene networks for TTA-UC and to synthesize a conjugated polyelectrolyte (CPE) used as a pyrophosphate (PPi) sensor in complex aqueous media. Chapter I focuses on the synthesis and upconversion performance of rubbery networks fabricated using thiol-ene click photopolymerization. The advancement of triplet-triplet annihilation based upconversion (TTA-UC) in emerging technologies necessitates the development of solid-state systems that are readily accessible and broadly applicable. We demonstrate that thiol-ene click chemistry can be used as a facile cure-on-demand synthetic …