Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Plasma and Beam Physics

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 315

Full-Text Articles in Entire DC Network

Prompt Vs Local Redeposition: Model Refinement And Experimental Design For Understanding High-Z Net Erosion In Magnetic Confinement Fusion, Davis C. Easley Aug 2024

Prompt Vs Local Redeposition: Model Refinement And Experimental Design For Understanding High-Z Net Erosion In Magnetic Confinement Fusion, Davis C. Easley

Doctoral Dissertations

The economic and engineering success of magnetic confinement fusion reactors significantly depends upon the optimization of plasma facing component (PFC) design. For high-Z PFCs, the critical engineering condition is minimal net erosion (i.e. gross erosion – redeposition). Here, we present a high-Z net erosion model discriminating three primary redeposition mechanisms: prompt (geometric-driven), local (sheath-driven), and far (scrape-off-layer-driven). Using these distinctions, we show modeling for high-Z net erosion in magnetic-confinement fusion over a matrix of key plasma parameters. With Sobol’ methods we assess the sensitivity of each mechanism and show that prompt-vs-local trade-off critically explains underprediction in redeposition losses of up …


Identifying Ion-Scale Waves In Parker Solar Probe Sub-Alfvénic Intervals, Nicholas Henry Androski, Kristoff Paulson Jun 2024

Identifying Ion-Scale Waves In Parker Solar Probe Sub-Alfvénic Intervals, Nicholas Henry Androski, Kristoff Paulson

Physics

Identification of coherent quasi-parallel ion-scale (1-32 Hz) wave activity in sub-Alfvénic regions of the solar wind observed by NASA's Parker Solar Probe during perihelion encounters 8 to 16. Wave activity is filtered computationally by coherency, circular polarization and propagation angle with respect to the mean magnetic field. Initial statistical results are presented with suggestions for future improvements and studies. A general overview of the heliosphere and the context of ion-cyclotron waves (an ion-scale wave) in the coronal heating problem. Along the way to identify ion-scale wave activity, tables of sub-Alfvénic intervals and current sheet crossings for encounters 8 to 16 …


On The Ubiquity, Properties And Evolution Of Small-Scale Magnetic Flux Ropes In The Heliosphere, Hameedullah Farooki May 2024

On The Ubiquity, Properties And Evolution Of Small-Scale Magnetic Flux Ropes In The Heliosphere, Hameedullah Farooki

Dissertations

The solar wind is a plasma constantly blowing out from the Sun with a large-scale magnetic field having significant local complexity at small scales. Small-scale magnetic flux ropes (SMFRs), plasma structures with twisted field lines, are an important element of this complexity. This dissertation contributes several studies that further our understanding of SMFRs. The first study applies machine learning to measurements from Wind labeled by the presence of SMFRs and magnetic clouds (MCs). MCs were distinguished from non-MFRs with an AUC of 94% and SMFRs with an AUC of 89% and had distinctive plasma properties, whereas SMFRs appeared to be …


Better Light Than Never: A New Radiative Mechanism For Observing Binary Black Holes, Paul Rioles May 2024

Better Light Than Never: A New Radiative Mechanism For Observing Binary Black Holes, Paul Rioles

Graduate Masters Theses

Black holes are notoriously elusive, they are impossible to observe directly, and cur- rent methods of extracting information from behind their cosmic camouflage are both limited in number and experimentally difficult. The scope of this investigation is to ex- plore a proposed novel radiative mechanism for active similar mass binary black holes, affording new observational methods to investigate frequency inspirals of BH mergers. The explored mechanism is a result of each BH’s accretion of the surrounding plasma, creating voids that orbit throughout the plasma. The significant results described in this thesis include expressions for the frequency, power radiated per unit …


Modeling The Neutral Densities Of Sparc Using A Python Version Of Kn1d, Gwendolyn R. Galleher May 2024

Modeling The Neutral Densities Of Sparc Using A Python Version Of Kn1d, Gwendolyn R. Galleher

Undergraduate Honors Theses

Currently, neutral recycling is a crucial contributor to fueling the plasma within tokamaks. However, Commonwealth Fusion System’s SPARC Tokamak is expected to be more opaque to neutrals. Thus, we anticipate that the role of neutral recycling in fueling will decrease. Since SPARC is predicted to have a groundbreaking fusion power gain ratio of Q ≈ 10, we must have a concrete understanding of the opacity
and whether or not alternative fueling practices must be included. To develop said understanding, we produced neutral density profiles via KN1DPy, a 1D kinetic neutral transport code for atomic and molecular hydrogen in an ionizing …


Identifying Transitions In Plasma With Topological Data Analysis Of Noisy Turbulence, Julius Kiewel May 2024

Identifying Transitions In Plasma With Topological Data Analysis Of Noisy Turbulence, Julius Kiewel

Undergraduate Honors Theses

Cross-field transport and heat loss in a magnetically confined plasma is determined by turbulence driven by perpendicular (to the magnetic field) pressure gradients. The heat losses from turbulence can make it difficult to maintain the energy density required to reach and maintain the conditions necessary for fusion. Self-organization of turbulence into intermediate scale so-called zonal flows can reduce the radial heat losses, however identifying when the transition occurs and any precursors to the transition is still a challenge. Topological Data Analysis (TDA) is a mathematical method which is used to extract topological features from point cloud and digital data to …


Understanding The Impact Of Divertor And Main Chamber Ion Fluxes On Divertor Closure In The Diii-D Tokamak, Kirtan M. Davda May 2024

Understanding The Impact Of Divertor And Main Chamber Ion Fluxes On Divertor Closure In The Diii-D Tokamak, Kirtan M. Davda

Doctoral Dissertations

The diverted tokamak redirects extreme heat and particles to targets, a plasma-facing component designed for such loads. Here, the local fluxes produce strong particle recycling and sputtering. Recycled neutrals can “leak” into the region between the core and wall, the scrape-off-layer (SOL), impacting plasma performance. Increasing divertor closure can reduce leakage by containing neutrals within the divertor. However, there exists a need to quantify divertor baffle restrictions and understand closure directly from empirical data as opposed to indirectly through modeling.

Our study introduces the Geometric Restriction Parameter (GRP) based on simplifying neutral transport to ballistic pathways. Specifically, it considers the …


Dimensionlessly Comparing Hydrogen And Helium Plasmas At Lapd, Lela Creamer May 2024

Dimensionlessly Comparing Hydrogen And Helium Plasmas At Lapd, Lela Creamer

Undergraduate Honors Theses

This project compares the hydrogen and helium gas puff plasmas created at the Large Plasma Device (LAPD) using dimensionless numbers to determine the extent to which the turbulence pattern can be explained by plasma physics. Since turbu- lence tends to dissipate energy and particles in a plasma, it can cause problems for fusion reactors by reducing their efficiency. With a better understanding of turbu- lence’s causes and behavior, some of this energy loss could potentially be avoided. In recent experiments at LAPD, an unexpectedly high amount of turbulence was de- tected when helium was used to create the plasma, which …


Plasma Diagnostics For Anode Cathode Plasmas And High Energy Density Physics On A Linear Transformer Driver, Robert Beattie-Rossberg Apr 2024

Plasma Diagnostics For Anode Cathode Plasmas And High Energy Density Physics On A Linear Transformer Driver, Robert Beattie-Rossberg

Electrical and Computer Engineering ETDs

A twelve-brick air insulated linear transformer driver (LTD) was characterized by charging to voltages ranging from 30 to 70 kV and delivering energy to two separate resistive loads. Various plasma diagnostics were built and fielded with an emphasis on the design, implementation and analysis of a Mach Zehnder interferometer, a moiré deflectometer and a spectroscopy system providing information on the temporal evolution of plasma electron density and atomic composition. Rogowski coils, XRD radiation detectors, framing camera images and time integrated DSLR images are used to further understand load conditions where current data, x ray radiation data, velocity data and instability …


Spectroscopic End Point Detection With An Electron Beam Evaporator, Ryan Mcgraw Mar 2024

Spectroscopic End Point Detection With An Electron Beam Evaporator, Ryan Mcgraw

University Honors Theses

Spectroscopic end point detection is a common tool used for measuring slope changes in wavelength intensity. Using algorithms able to apply this concept, coatings will be able to be dynamically measured in real time and stopped at the appropriate level to ensure process uniformity. It is currently applied to reductive processes such as etching, where the surface will start to be eaten away, creating a plasma. When the entire amount of a material on a substrate has been eaten away, the plasma will change color as it is beginning to etch a different material. Using a spectrometer, this point where …


Modeling The Dynamics Of Radiation Belt Electrons And Ring Current Protons, Xingzhi Lyu Jan 2024

Modeling The Dynamics Of Radiation Belt Electrons And Ring Current Protons, Xingzhi Lyu

Graduate Theses, Dissertations, and Problem Reports

Earth’s inner magnetosphere is a highly dynamic region with various charged particle populations and current systems. The radiation belts, composed of relativistic electrons and protons, is an environment that can pose significant risks to both spacecraft and humans in space; while the fluctuations of ring current, an electric current flowing around the earth consisting of energetic electrons and ions, can lead to severe disruptions in ground-based electrical systems. In this dissertation, we first modeled the long-term evolution of ring current protons based on the measurements of Van Allen Probes. By implementing a 1D radial diffusion model with charge exchange loss, …


Experimental Studies Of Neutral Particles And The Isotope Effect In The Edge Of Tokamak Plasmas, Ryan Chaban Jan 2024

Experimental Studies Of Neutral Particles And The Isotope Effect In The Edge Of Tokamak Plasmas, Ryan Chaban

Dissertations, Theses, and Masters Projects

The H-mode plasma edge is a region of steep gradients in density and temperature known as the “pedestal” which greatly increases energy confinement. The complex links between neutral-plasma interactions and both diffusive and convective transport in the pedestal must be understood to model, predict, and achieve the high performance required for a fusion power plant. This dissertation explores the effects of different hydrogenic isotope neutral particles and plasma transport from the edge pedestal region into the Scrape-Off Layer. Current experiments typically use deuterium (H with amu=2 or D), however future fusion power plants may startup with hydrogen (H), and eventually …


Thermocatalytic Plasma-Assisted Dry Reforming Of Methane Over Ni/Al2o3 Catalyst, Tyler Wong Dec 2023

Thermocatalytic Plasma-Assisted Dry Reforming Of Methane Over Ni/Al2o3 Catalyst, Tyler Wong

Seton Hall University Dissertations and Theses (ETDs)

Plasma catalysis is an advantageous approach that combines the effects of plasma with the enhancements of a catalyst. By utilizing a nickel catalyst in the plasma discharge zone of a dielectric barrier discharge (DBD), it can give an enhancement to the electrical field, boost microdischarges, and increase conversion and selectivity rates of CH4 and CO2 in the dry reforming of methane (DRM) reaction.

Industrial application of nickel catalysts in DBD Plasma DRM process are limited by poor stability, which is caused by the sintering of active metal particles and coke deposition on the catalyst surface. In this work, …


Spectroscopy Of Highly Charged Ions For Astrophysical And Laboratory Plasma Diagnostics, Yang Yang Aug 2023

Spectroscopy Of Highly Charged Ions For Astrophysical And Laboratory Plasma Diagnostics, Yang Yang

All Dissertations

Electron beam ion traps (EBITs) are small-scale laboratory devices that create and trap highly charged ions (HCI) for spectroscopic studies. These devices create plasma conditions resembling astrophysical environments like stellar winds and supernova remnants, providing valuable insights into astrophysical plasma. Theoretical models for such systems require incorporating relativistic and quantum electrodynamics effects, making experimental studies of HCIs essential for benchmarking these theories.

Spectral analysis of astrophysical and laboratory plasma requires understanding the ionization balance. Accurate atomic data, including excitation, ionization, and recombination cross sections, along with precise knowledge of operating conditions such as electron beam density, electron beam energy, and …


Apparatus And Instrumentation Design For Investigation Of Surface Impact Effects On Superconductivity, Austin Back May 2023

Apparatus And Instrumentation Design For Investigation Of Surface Impact Effects On Superconductivity, Austin Back

All Theses

The effects of ion irradiation on the physical properties of materials make EBITs an invaluable tool for many scientific and engineering fields. Many experiments rely on the use of these lab setups to test for device reliability, explore surface physics phenomena, and replicate the environment for many physical systems that are not readily accessible. We seek to extend the capabilities of these experiments using the CUEBIT and a new sample holder installed in section 3.

This thesis begins by presenting an overview of the CUEBIT and the basic operations of the equipment. This is followed by a brief explanation of …


The Magnetic Field Of Protostar-Disk-Outflow Systems, Mahmoud Sharkawi Apr 2023

The Magnetic Field Of Protostar-Disk-Outflow Systems, Mahmoud Sharkawi

Electronic Thesis and Dissertation Repository

Recent observations of protostellar cores reveal complex magnetic field configurations that are distorted in the innermost disk region. Unlike the prestellar phase, where the magnetic field geometry is simpler with an hourglass configuration, magnetic fields in the protostellar phase are sculpted by the formation of outflows and rapid rotation. This gives rise to a significant azimuthal (or toroidal) component that has not yet been analytically modelled in the literature. Moreover, the onset of outflows, which act as angular momentum transport mechanisms, have received considerable attention in the past few decades. Two mechanisms: 1) the driving by the gradient of a …


Simulation Of Neutron Generation From Laser-Driven Fusion In A Liquid D2o Sheet Using Novel Warpx Module, Colton R. Stoner Mar 2023

Simulation Of Neutron Generation From Laser-Driven Fusion In A Liquid D2o Sheet Using Novel Warpx Module, Colton R. Stoner

Theses and Dissertations

Using WarpX’s new nuclear fusion module, this work attempts to model an experimental system at the ELL at the AFIT with WarpX and draw conclusions about fusion products from resulting simulations. Recently, a table-top, high repetition rate, mixed radiation source was demonstrated at the ELL employing a HIL to fuse the deuterium nuclei present in a unique liquid target of heavy water. Analysis of the simulations predicted an isotropic output of neutrons from deuterium-deuterium fusion. These simulated neutrons were created in tens of femtoseconds from dense bodies of deuterons that were perturbed by the laser. However, it was found that …


Pulsed Power Neutron Production With Deuterated Polymer Accelerator Targets, Anthony O. Hagey Mar 2023

Pulsed Power Neutron Production With Deuterated Polymer Accelerator Targets, Anthony O. Hagey

Theses and Dissertations

This document presents an investigation of the effect of deuterated polyethylene accelerator targets on the neutron fluence from a local mass injection dense plasma focus driven by the United States Naval Research Laboratory’s Hawk pulsed-power generator. After successful production of thin targets, the acquisition of thicker targets, and testing inside Hawk, it was found that the presence of a deuterated polyethylene target increased the neutron fluence. Results suggested that fluence can significantly increase with the presence of a deuterated target vs a nondeuterated target. Additive manufacturing printing was used as a production method in order to determine if deuterated accelerator …


A High-Precision Electron Emission Model: Computational Methods For Nanoscale Structures, Alister J. Tencate Jan 2023

A High-Precision Electron Emission Model: Computational Methods For Nanoscale Structures, Alister J. Tencate

Graduate Research Theses & Dissertations

The high-intensity, high-brightness and precision frontiers for charged particle beams are an increasingly important focus for study. Electron microscopy has demonstrated high quality beams from a single nanotip emitter, and cathodes of structured nanoscale arrays show promise as ultracold electron sources. Optimization of the cathode design for precision applications necessitates a detailed treatment of the interplay between the structure geometry, quantum mechanical emission mechanism, and electromagnetic interactions between the emitted electrons and the boundary interface. This dissertation details the numerical tools developed to simulate these processes efficiently with enough fidelity to be accurate even in the ultracold regime.

Conventional simulation …


Energy Conversion In Plasmas Out Of Local Thermodynamic Equilibrium: A Kinetic Theory Perspective, Mahmud Hasan Barbhuiya Jan 2023

Energy Conversion In Plasmas Out Of Local Thermodynamic Equilibrium: A Kinetic Theory Perspective, Mahmud Hasan Barbhuiya

Graduate Theses, Dissertations, and Problem Reports

The study of energy conversion in collisionless plasmas that are not in local thermodynamic equilibrium (LTE) is at the leading edge of plasma physics research. Plasma constituents in such systems can exhibit highly structured phase space densities that deviate significantly from that of a Maxwellian. A standard approach has emerged in recent years for investigating energy conversion between bulk flow and thermal energy in collisionless plasmas using the non-LTE generalization of the first law of thermodynamics. The primary focus is placed on pressure-strain interaction (PS) term, with a particular emphasis on its non-LTE piece called Pi − D. Recent studies …


Drift Orbit Bifurcation Effects On Earth’S Radiation Belt Electrons, Jinbei Huang Jan 2023

Drift Orbit Bifurcation Effects On Earth’S Radiation Belt Electrons, Jinbei Huang

Graduate Theses, Dissertations, and Problem Reports

Energetic charged particles trapped in the Earth’s radiation belt form a hazardous space environment for artificial electronic systems and astronauts. The study of Earth's radiation belt is becoming increasingly important with the development of communication technology, which plays a significant role in modern society. Earth’s radiation belt is highly dynamic, and the electron flux can drop by several orders of magnitude within a few hours which is called radiation belt dropout. The fast dropout of energetic electrons in the radiation belt, despite its significance, has not been thoroughly studied. One of the most compelling outstanding questions in Earth's radiation belt …


Dual Energy Electron Storage Ring Cooler Design For Relativistic Ion Beams, Bhawin Dhital Dec 2022

Dual Energy Electron Storage Ring Cooler Design For Relativistic Ion Beams, Bhawin Dhital

Physics Theses & Dissertations

Collider experiments demand small beam emittances in order to achieve high luminosity. For light particles such as electrons, there exists a natural synchrotron radiation damping resulting in low emittance beams at equilibrium. In the case of heavy particle beams such as proton or ion beams, there is no significant synchrotron radiation damping effect and some cooling mechanism is needed to get to low emittance beams. A dual energy storage ring cooler is a novel concept proposed to cool hadron beams at higher energies. The design consists of two rings: a low energy ring and a high energy ring connected by …


Kinetic Modeling Of Ionospheric Outflows Observed By The Visions-1 Sounding Rocket, Robert M. Albarran Ii Sep 2022

Kinetic Modeling Of Ionospheric Outflows Observed By The Visions-1 Sounding Rocket, Robert M. Albarran Ii

Doctoral Dissertations and Master's Theses

Plasma escape from the high-latitude ionosphere (ion outflow) serves as a significant source of heavy plasma to magnetospheric plasma sheet and ring current regions. Outflows alter mass density and reconnection rates, hence global responses of the magnetosphere. The VISIONS-1 (VISualizing Ion Outflow via Neutral atom imaging during a Substorm) sounding rocket was launched on Feb. 7, 2013 at 8:21 UTC from Poker Flat, Alaska, into an auroral substorm with the objective of identifying the drivers and dynamics of nightside ion outflow at altitudes where it is initiated, below 1000 km. Energetic ion data from the VISIONS-1 polar cap boundary crossing …


Distance Estimates To Evolved Stars Using Infrared Emission And Verification And Validation Of The Plasma Code Empire, Brandon M. Medina Aug 2022

Distance Estimates To Evolved Stars Using Infrared Emission And Verification And Validation Of The Plasma Code Empire, Brandon M. Medina

Physics & Astronomy ETDs

Gaining insight into the structure and dynamics of the Milky Way is important for understanding the universe on a large scale. Evolved stars on the Asymptotic Giant Branch are useful for studying the Milky Way because their emission is peaked in the infrared, where interstellar extinction effects are not as dominant. To further understand the physical properties of these objects like luminosity and investigate the Galaxy's structure, we need distance estimates. Obtaining distance estimates for these evolved stars via trigonometric parallax measurements is time-consuming, so infrared surveys studying Asymptotic Giant Branch stars can benefit from other distance estimate methods. In …


Ultrashort Pulse Laser Filamentation Electrical And Optical Diagnostic Comparison, James E. Wymer Aug 2022

Ultrashort Pulse Laser Filamentation Electrical And Optical Diagnostic Comparison, James E. Wymer

Optical Science and Engineering ETDs

Results presented here examine the effect of changing gas pressure on the radio frequency (RF) emissions of an ultrashort pulse laser filament plasma and how those emissions vary longitudinally in the laser focal region. We use a WR284 rectangular waveguide with a 1.5 cm hole that allows the beam through. A 3.2 GHz microwave signal is emitted in the waveguide, and signals are received through a waveguide-to-coax antenna connected to an HP8470B Schottky diode. By enabling and disabling the 3.2 GHz signal, we measure both the self-emitted RF from a USPL filament and subsequently the degree of attenuation a filament …


Artificial Intelligence, Controls, And Sensor Fusion For Optimization And Modeling Of Space Missions And Particle Accelerators, Reza Pirayeshshirazinezhad May 2022

Artificial Intelligence, Controls, And Sensor Fusion For Optimization And Modeling Of Space Missions And Particle Accelerators, Reza Pirayeshshirazinezhad

Mechanical Engineering ETDs

This PhD dissertation is devoted to developing artificial intelligence (AI) applications for space missions and particle accelerators considering constraints on the computational resources. The space mission studied in this research, the Virtual Telescope for X-ray Observations (VTXO), is the mission exploiting 2 6U-CubeSats operating in a precision formation. The goal of the VTXO project is to develop a space-based, X-ray imaging telescope with high angular resolution precision. VTXO space mission is designed and the mission is optimized to increase the performance of the mission. Trajectory optimization with AI, hybrid control, control algorithms, and high performance computing are all used to …


Tokamak 3d Heat Load Investigations Using An Integrated Simulation Framework, Thomas Looby May 2022

Tokamak 3d Heat Load Investigations Using An Integrated Simulation Framework, Thomas Looby

Doctoral Dissertations

Reactor class nuclear fusion tokamaks will be inherently complex. Thousands of interconnected systems that span orders of magnitude in physical scale must operate cohesively for the machine to function. Because these reactor class tokamaks are all in an early design stage, it is difficult to quantify exactly how each subsystem will act within the context of the greater systems. Therefore, to predict the engineering parameters necessary to design the machine, simulation frameworks that can model individual systems as well as the interfaced systems are necessary. This dissertation outlines a novel framework developed to couple otherwise disparate computational domains together into …


Towards The Production Of A Self-Consistent Phase Space Distribution, Austin Hoover May 2022

Towards The Production Of A Self-Consistent Phase Space Distribution, Austin Hoover

Doctoral Dissertations

A self-consistent phase space distribution is a charged particle beam in which the electric field has a linear dependence on the particle coordinates, and in which the linearity of the electric field is conserved as the beam is transported through arbitrary linear focusing fields. These features could increase the possible beam intensity in a circular accelerator by minimizing/eliminating the space charge tune shift/spread. Additionally, the uniform density of known self-consistent distributions would be ideal for fixed-target applications. Finally, certain self-consistent distributions can be flattened by exploiting the relationships between their phases space coordinates and would therefore be useful in a …


Electrothermal Plenum Thruster Simulations Varying Input Pressure And Voltage, Naomi Nicole Ingram May 2022

Electrothermal Plenum Thruster Simulations Varying Input Pressure And Voltage, Naomi Nicole Ingram

Open Access Theses & Dissertations

A radiofrequency electrothermal thruster is designed and simulated to create a low ionization energy plasma from a neutral propellant using a radio-frequency power. With an asymmetrical surface area ratio between the grounded and powered electrode, ion-neutral charge exchange collisions occurring within the propellant result in propellant heating. The Electrothermal Plenum Thruster conducts this propellant heating in an annular plenum chamber in attempt to maximize propellant heating. A software called CFD-ACE+ is utilized to demonstrate the effects of an enhanced sheath from the asymmetrical power coupling arrangement. Two sets of simulations are run to understand how input variables affect the plasma …


Whistler Waves: Modeling And Observations, Daniel Williams Apr 2022

Whistler Waves: Modeling And Observations, Daniel Williams

Doctoral Dissertations and Master's Theses

The thesis presents the results of all the research from the published and in publication process research in the Journal of Geophysical Research [1]. This research focuses on whistler wave ducting events in the equatorial magnetosphere. High-density ducts are the main focus of whistler study in both studies as they are commonly observed by the Van Allen Probe satellites. A three-step procedure based on the analysis of the whistler wave dispersion relation and numerical simulations of the electron magnetohydrodynamics model. We use this model to identify the parallel and perpendicular wave numbers of the “most trapped” wave in an attempt …