Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Utah State University

2014

Keyword
Publication
Publication Type
File Type

Articles 31 - 60 of 268

Full-Text Articles in Entire DC Network

Cathodolumiescence Studies Of The Density Of States Of Disordered Silicon Dioxide, Jr Dennison, Amberly Evans Jensen Oct 2014

Cathodolumiescence Studies Of The Density Of States Of Disordered Silicon Dioxide, Jr Dennison, Amberly Evans Jensen

Presentations

Electron bombardment measurements have shown that disordered SiO2 exhibits cathodoluminescence, with an overall intensity that varies with incident electron beam energy and current density, sample temperature, exposure time, and wavelength. A simple model based on the defect density of states—used to explain electron transport in highly disordered insulating materials—has been extended to predict the relative cathodoluminescent intensity and spectral radiance for disordered SiO 2 as a function of these variables. The spectral radiance exhibited four distinct bands, corresponding to four distinct energy distributions of defect states within the band gap; each showed different temperature dependence. These localized defect or “trap” …


Cathodoluminescence Events Coincident With Muon Detection, Kenneth Zia, Justin Dekany, Jr Dennison Oct 2014

Cathodoluminescence Events Coincident With Muon Detection, Kenneth Zia, Justin Dekany, Jr Dennison

Presentations

Samples of highly disordered insulating material have been irradiated with keV electron beams, resulting in three forms of electron induced light emission with differing duration: arcs (duration), “flares” (~100 s), and cathodoluminescence (as long as beam is on) [Dennison, 2013]. The arc and cathodoluminescence phenomena are well understood, while the flares’ origins are not. Flares were observed at intervals of ~2 per hr. This is within a factor of 2 for the expected muon cross section at an altitude of Logan, UT (1370 m) caused by high altitude cosmic rays; those high energy particles could have deposited sufficient energy throughout …


Discharge Breakdown Analyses, Sam Hansen, Jr Dennison, Allen Andersen Oct 2014

Discharge Breakdown Analyses, Sam Hansen, Jr Dennison, Allen Andersen

Presentations

Material breakdown due to Electrostatic discharge (ESD) is the primary cause of spacecraft damage due to environment interactions in space. This occurs when the space plasma fluxes charge a craft to high voltages where insulating craft materials then break down. This failure allows current to flow freely through the material, this can damage or destroy onboard electrical systems. My project focuses on the effects of these breakdowns on suspect materials commonly used for electrical insulation in space. The USU Material Physics Group has performed ESD tests on hundreds of samples to date. The ESD damage sites of these samples have …


Lifetimes Of Polymeric Dielectrics: A Dual-Defect Model, Allen Andersen, Jr Dennison Oct 2014

Lifetimes Of Polymeric Dielectrics: A Dual-Defect Model, Allen Andersen, Jr Dennison

Presentations

Electrostatic discharge (ESD) can cause catastrophic failures in electronic devices. Estimating the lifetime of dielectrics under prolonged high field exposure is a major design concern for applications including spacecraft, high voltage DC power transmission, and semiconductor electronics. Dielectric strengths listed in engineering handbooks are primarily based on cursory measurements with poor repeatability and tend to overestimate ESD fields in real applications. Standard measurements subject test samples to ~500 V/s ramp rates until breakdown. We present the results of ESD studies in two prototypical polymer dielectrics using a ramp rate of ~20 V/4s until breakdown together with tests applying a static …


Modeling The Energy Dependent Cathodoluminescent Intensity Of A Carbon Composite Material, Justin Christensen, Kelby T. Peterson, Justin Dekany, Jr Dennison Oct 2014

Modeling The Energy Dependent Cathodoluminescent Intensity Of A Carbon Composite Material, Justin Christensen, Kelby T. Peterson, Justin Dekany, Jr Dennison

Presentations

When highly disordered insulating materials are subjected to energetic electron bombardment they can emit photons. This process is termed “cathodoluminescence.” This occurs in the space plasma environment and is an important phenomenon to understand when designing any object to be put into space. Light emitted from spacecraft materials can affect optical detection, and can cause stray-light contamination in space-based observatories. The Materials Physics Group at Utah State University uses an ultra-high vacuum chamber equipped with electron guns and a cryostat to control the sample temperature to simulate the space environment and to observe its affects on sample materials. Previous studies …


Space Effects Survivability Testing, Lisa Montierth Phillipps, Jr Dennison, Kent Hartley, Robert H. Johnson, Justin Dekany, James S. Dyer Oct 2014

Space Effects Survivability Testing, Lisa Montierth Phillipps, Jr Dennison, Kent Hartley, Robert H. Johnson, Justin Dekany, James S. Dyer

Presentations

A versatile test facility has been designed to study the effects of space environment fluxes and radiation damage on small scale materials samples, system components, and small satellites. Cost-effective long-duration testing for potentially environmental-induced modifications is increasingly more important as small satellite programs have longer mission lifetimes, expand to more harsh environments, make more diverse and sensitive measurements, minimize shielding to reduce mass, and utilize more compact and sensitive electronics. The facility simulates environmental components including the neutral gas atmosphere, the solar spectrum, electron plasma fluxes, and temperature. The UV/VIS/NIR solar spectrum is simulated using a class AAA Solar Simulator …


Time And Dark Matter From The Conformal Symmetries Of Euclidean Space, Jeffrey S. Hazboun, James Thomas Wheeler Oct 2014

Time And Dark Matter From The Conformal Symmetries Of Euclidean Space, Jeffrey S. Hazboun, James Thomas Wheeler

All Physics Faculty Publications

The quotient of the conformal group of Euclidean 4-space by its Weyl subgroup results in a geometry possessing many of the properties of relativistic phase space, including both a natural symplectic form and non-degenerate Killing metric. We show that the general solution posesses orthogonal Lagrangian submanifolds, with the induced metric and the spin connection on the submanifolds necessarily Lorentzian, despite the Euclidean starting pont. By examining the structure equations of the biconformal space in an orthonormal frame adapted to its phase space properties, we also find that two new tensor fields exist in this geometry, not present in Riemannian geometry. …


Cathodoluminescence Events Coincident With Muon Detection, Kenneth Zia Oct 2014

Cathodoluminescence Events Coincident With Muon Detection, Kenneth Zia

Senior Theses and Projects

No abstract provided.


Drilling The Solid Earth: Global Geodynamic Cycles And Earth Evolution, John W. Shervais, Nicholas Arndt, Kathryn M. Goodenough Oct 2014

Drilling The Solid Earth: Global Geodynamic Cycles And Earth Evolution, John W. Shervais, Nicholas Arndt, Kathryn M. Goodenough

Geosciences Faculty Publications

The physical and chemical evolution of the Earth is driven by geodynamic cycles that are global in scale, operating over 4.57 Ga of Earth’s history. Some processes are truly cyclic, e.g., the Wilson Cycle, while others are irreversible (e.g., core formation). Heat and mass transfer between the lowermost mantle (e.g., core-mantle boundary) and the surface drives these global geodynamic processes. Subduction of lithospheric plates transfers cool fractionated material into the lower mantle and leads indirectly to the formation of new oceanic lithosphere, while the rise of thermochemical plumes recycles the remnants of these plates back to the surface, driven by …


Guesstimation: The Art Of Getting About The Right Answer, Jr Dennison Oct 2014

Guesstimation: The Art Of Getting About The Right Answer, Jr Dennison

Presentations

No abstract provided.


New Measurements Of Mcmurdo Gravity Wave Parameters, Jonathan Pugmire, Michael J. Taylor Oct 2014

New Measurements Of Mcmurdo Gravity Wave Parameters, Jonathan Pugmire, Michael J. Taylor

Graduate Student Presentations

The ANtarctic Gravity Wave Instrument Network (ANGWIN) is an NSF sponsored international program designed to develop and utilize a network of gravity wave observatories using existing and new instrumentation operated at several established research stations around the continent. The primary goal is to better understand and quantify large-scale gravity wave climatology and their effects on the upper atmosphere over Antarctica. ANGWIN currently comprises research measurements from five nations (U.S., U.K., Australia, Japan, and Brazil) at seven international stations. Utah State University’s Atmospheric Imaging Lab operates all-sky infrared and CCD imagers and an Advanced Mesospheric Temperature Mapper (AMTM) imager at several …


Breakdown Analysis Of Electrostatic Discharge, Sam Hansen, Allen Andersen, Jr Dennison Oct 2014

Breakdown Analysis Of Electrostatic Discharge, Sam Hansen, Allen Andersen, Jr Dennison

Posters

Electrostatic discharge (ESD) and the associated material breakdown is the primary cause for spacecraft damage due to space environment interactions. This phenomenon occurs when the space plasma fluxes charge a craft to high voltages where insulating materials then break down. This failure allows current to flow freely through the material which; can damage or destroy onboard electrical systems. My work focuses on the effects of these breakdowns on suspect materials commonly used for electrical insulation in space. The USU Material Physics Group has performed ESD tests on hundreds of samples to date. The ESD damage sites of these samples have …


A Dual-Defect Model For Predicting Lifetimes For Polymeric Discharges From Accelerated Testing, Allen Andersen, Jr Dennison Oct 2014

A Dual-Defect Model For Predicting Lifetimes For Polymeric Discharges From Accelerated Testing, Allen Andersen, Jr Dennison

Posters

Electrostatic discharge (ESD) can cause catastrophic failures in electronic devices. Estimating the lifetime of dielectrics under prolonged high field exposure is a major design concern for applications including spacecraft, high voltage DC power transmission, and semiconductor electronics. Dielectric strengths listed in engineering handbooks are primarily based on cursory measurements with poor repeatability and tend to overestimate ESD fields in real applications. Standard measurements subject test samples to ≈500 V/s ramp rates until breakdown. We present the results of ESD studies in two prototypical polymer dielectrics using a ramp rate of ≈20 V/4s until breakdown, together with tests applying a …


Cathodoluminescence Events Coincident With Muon Detection, Kenneth Zia, Justin Dekany, Jr Dennison Oct 2014

Cathodoluminescence Events Coincident With Muon Detection, Kenneth Zia, Justin Dekany, Jr Dennison

Posters

Samples of highly disordered insulating material were irradiated with 1 keV electron beams, resulting in three forms of light emission with differing duration: arcs (<1 s duration), flares (~100 s), and cathodoluminescence (as long as beam is on). The arc and cathodoluminescence phenomena are well understood, while the flares are not. Flares were observed at intervals of ~2 per hr. This is within a factor of 2 for the expected muon crosssection at an altitude of Logan, UT (1370 m) caused by high altitude cosmic rays. Based on this suggestive evidence, we have proposed incorporation of standard muon coincidence detection apparatus into our vacuum cathode luminescence test facility. Measurements of the muon cross-section zenith angle and angle-dependence will provide calibration of the muon detector. If muon evidence coincides with the flare events, this will provide definitive evidence of the flare origin. We will discover whether a correlation between flares of charged sample are caused by transitory muons which trigger discharge and subsequent recharging during our testing of space materials.


Cathodolumiescence Studies Of The Density Of States Of Disordered Silicon Dioxide, Jr Dennison, Amberly Evans Jensen Oct 2014

Cathodolumiescence Studies Of The Density Of States Of Disordered Silicon Dioxide, Jr Dennison, Amberly Evans Jensen

Presentations

Electron bombardment measurements have shown that disordered SiO2 exhibits cathodoluminescence, with an overall intensity that varies with incident electron beam energy and current density, sample temperature, exposure time, and wavelength. A simple model based on the defect density of states—used to explain electron transport in highly disordered insulating materials—has been extended to predict the relative cathodoluminescent intensity and spectral radiance for disordered SiO2 as a function of these variables. The spectral radiance exhibited four distinct bands, corresponding to four distinct energy distributions of defect states within the band gap; each showed different temperature dependence. These localized defect or “trap” states …


Improving The Resilience Of Mixed-Farm Systems To Pending Climate Change In Far Western Nepal: Baseline Survey Report, D. Layne Coppock Oct 2014

Improving The Resilience Of Mixed-Farm Systems To Pending Climate Change In Far Western Nepal: Baseline Survey Report, D. Layne Coppock

Environment and Society Faculty Publications

This report provides a summary of the main results of a household baseline survey carried out in late 2013 in four village development committees (VDC) in Bajura District. A total of 320 households were surveyed with 80 per VDC. Two of the VDCs have been subsequently targeted for interventions related to climate change adaptation, while two VDCs have voluntary agreed to serving as paired “controls.” This baseline survey was undertaken as part of a study entitled, ‘Improving the Resilience of Mixed Farm Systems to Pending Climate Change in Far Western Nepal’, conducted by USU and HKI. The baseline survey was …


Warming, Competition, And Bromus Tectorum Population Growth Across An Elevation Gradient, Aldo Compagnoni, Peter B. Adler Sep 2014

Warming, Competition, And Bromus Tectorum Population Growth Across An Elevation Gradient, Aldo Compagnoni, Peter B. Adler

Green Canyon Environmental Research Area, Logan Utah

Cheatgrass (Bromus tectorum) is one of the most problematic invasive plant species in North America and climate change threatens to exacerbate its impacts. We conducted a two‐year field experiment to test the effect of warming, competition, and seed source on cheatgrass performance across an elevation gradient in northern Utah. We hypothesized that warming would increase cheatgrass performance, but that warming effects would be limited by competing vegetation and by local adaptation of cheatgrass seed sources. The warming treatment relied on open top chambers, we removed vegetation to assess the effect of competition from neighboring vegetation, and we reciprocally …


The Interplay Between Charge Transfer, Rehybridization, And Atomic Charges In The Internal Geometry Of Subunits In Noncovalent Interactions, Steve Scheiner Sep 2014

The Interplay Between Charge Transfer, Rehybridization, And Atomic Charges In The Internal Geometry Of Subunits In Noncovalent Interactions, Steve Scheiner

Chemistry and Biochemistry Faculty Publications

When a noncovalent bond is formed, there is frequently some charge transfer from one subunit to the other. The interaction also causes changes in the atomic charges and hybridization patterns of bonding orbitals. The manner in which these various effects combine to cause elongations or contractions of bonds within the individual subunits is examined. In both the cases of CH···O H-bonds and P···N pnicogen bonds, the bond length changes are consistent with the guiding principles generally known as Bent’s rules.


Age Of Barrier Canyon-Style Rock Art Constrained By Cross-Cutting Relations And Luminescence Dating Techniques, Joel L. Pederson, Harriet Cornachione, Steven R. Simms, Reza Sohbati, Tammy M. Rittenour, Andrew S. Murray, Gary Cox Sep 2014

Age Of Barrier Canyon-Style Rock Art Constrained By Cross-Cutting Relations And Luminescence Dating Techniques, Joel L. Pederson, Harriet Cornachione, Steven R. Simms, Reza Sohbati, Tammy M. Rittenour, Andrew S. Murray, Gary Cox

Geosciences Faculty Publications

Rock art compels interest from both researchers and a broader public, inspiring many hypotheses about its cultural origin and meaning, but it is notoriously difficult to date numerically. Barrier Canyon-style (BCS) pictographs of the Colorado Plateau are among the most debated examples; hypotheses about its age span the entire Holocene epoch and previous attempts at direct radiocarbon dating have failed. We provide multiple age constraints through the use of cross-cutting relations and new and broadly applicable approaches in optically stimulated luminescence dating at the Great Gallery panel, the type section of BCS art in Canyonlands National Park, southeastern Utah. Alluvial …


Investigations Of Electrical And Physical Properties Of Ceramic Materials For Spacecraft Applications, Kevin Guerch, Jr Dennison Sep 2014

Investigations Of Electrical And Physical Properties Of Ceramic Materials For Spacecraft Applications, Kevin Guerch, Jr Dennison

Presentations

No abstract provided.


Dual-Defect Model Of Electrostatic Discharge In Polymeric Dielectrics, Allen Andersen, Jr Dennison Sep 2014

Dual-Defect Model Of Electrostatic Discharge In Polymeric Dielectrics, Allen Andersen, Jr Dennison

Presentations

Electrostatic discharge (ESD) is a serious concern for spacecraft, high voltage power transmission, and other applications. A parallel plate capacitor geometry under high vacuum was used to apply increasing voltages across insulating samples until ESD breakdown and to apply sub-critical fields and observe time-to-breakdown. Transient arcing was frequently observed prior to complete ESD breakdown in both cases. Results are presented for two prototypical polymeric materials, low density polyethylene (LDPE) and polyimide (PI or Kapton HN™) in terms of both statistical and physics-based models.

Many electrical aging models are described by defect creation within the material from bond stress due to …


Observing The Quantumbehavior Of Light In An Undergraduate Laboratory, M. S. Neel, J. J. Thorn, V. W. Donato, G. S. Bergreen, Robert E. Davies, M. Beck Sep 2014

Observing The Quantumbehavior Of Light In An Undergraduate Laboratory, M. S. Neel, J. J. Thorn, V. W. Donato, G. S. Bergreen, Robert E. Davies, M. Beck

Plants, Soils, and Climate Faculty Publications

While the classical, wavelike behavior of light (interference and diffraction) has been easily observed in undergraduate laboratories for many years, explicit observation of the quantum nature of light (i.e., photons) is much more difficult. For example, while well-known phenomena such as the photoelectric effect and Compton scattering strongly suggest the existence of photons, they are not definitive proof of their existence. Here we present an experiment, suitable for an undergraduate laboratory, that unequivocally demonstrates the quantum nature of light. Spontaneously downconverted light is incident on a beamsplitter and the outputs are monitored with single-photon counting detectors. We observe a near …


Small Satellite Space Environments Effects Test Facility, Jr Dennison, Kent Hartley, Lisa Montierth Phillipps, Justin Dekany, James S. Dyer, Robert Johnson Aug 2014

Small Satellite Space Environments Effects Test Facility, Jr Dennison, Kent Hartley, Lisa Montierth Phillipps, Justin Dekany, James S. Dyer, Robert Johnson

Presentations

No abstract provided.


Investigation Of A Mesospheric Gravity Wave Ducting Event Using Coordinated Sodium Lidar And Mesospheric Temperature Mapper Measurements At Alomar, Norway (69°N), Katrina Bossert, David C. Fritts, Pierre-Dominique Pautet, Michael J. Taylor, Bifford P. Williams, William R. Pendleton Jr. Aug 2014

Investigation Of A Mesospheric Gravity Wave Ducting Event Using Coordinated Sodium Lidar And Mesospheric Temperature Mapper Measurements At Alomar, Norway (69°N), Katrina Bossert, David C. Fritts, Pierre-Dominique Pautet, Michael J. Taylor, Bifford P. Williams, William R. Pendleton Jr.

Publications

New measurements at the ALOMAR observatory in northern Norway (69°N, 16°E) using the Weber sodium lidar and the Advanced Mesospheric Temperature Mapper (AMTM) allow for a comprehensive investigation of a gravity wave (GW) event on 22 and 23 January 2012 and the complex and varying propagation environment in which the GW was observed. These observational techniques provide insight into the altitude ranges over which a GW may be evanescent or propagating and enable a clear distinction in specific cases. Weber sodium lidar measurements provide estimates of background temperature, wind, and stability profiles at altitudes from ~78 to 105 km. Detailed …


A Coordinated Investigation Of The Gravity Wave Breaking And The Associated Dynamical Instability By A Na Lidar And An Advanced Mesosphere Temperature Mapper Over Logan, Ut (41.7°N, 111.8°W), Xuguang Cai, Tao Yuan, Yucheng Zhao, Pierre-Dominique Pautet, Michael J. Taylor, William R. Pendleton Jr. Aug 2014

A Coordinated Investigation Of The Gravity Wave Breaking And The Associated Dynamical Instability By A Na Lidar And An Advanced Mesosphere Temperature Mapper Over Logan, Ut (41.7°N, 111.8°W), Xuguang Cai, Tao Yuan, Yucheng Zhao, Pierre-Dominique Pautet, Michael J. Taylor, William R. Pendleton Jr.

Publications

The impacts of gravity wave (GW) on the thermal and dynamic characteristics within the mesosphere/lower thermosphere, especially on the atmospheric instabilities, are still not fully understood. In this paper, we conduct a comprehensive and detailed investigation on one GW breaking event during a collaborative campaign between the Utah State University Na lidar and the Advanced Mesospheric Temperature Mapper (AMTM) on 9 September 2012. The AMTM provides direct evidence of the GW breaking as well as the horizontal parameters of the GWs involved, while the Na lidar's full diurnal cycle observations are utilized to uncover the roles of tide and GWs …


Composition, Alteration, And Texture Of Fault-Related Rocks From Safod Core And Surface Outcrop Analogs: Evidence For Deformation Processes And Fluid-Rock Interactions, Kelly Keighley Bradbury, Colter R. Davis, John W. Shervais, Susanne U. Janecke, James P. Evans Aug 2014

Composition, Alteration, And Texture Of Fault-Related Rocks From Safod Core And Surface Outcrop Analogs: Evidence For Deformation Processes And Fluid-Rock Interactions, Kelly Keighley Bradbury, Colter R. Davis, John W. Shervais, Susanne U. Janecke, James P. Evans

Geosciences Faculty Publications

We examine the fine-scale variations in mineralogical composition, geochemical alteration, and texture of the fault-related rocks from the Phase 3 whole-rock core sampled between 3,187.4 and 3,301.4 m measured depth within the San Andreas Fault Observatory at Depth (SAFOD) borehole near Parkfield, California. This work provides insight into the physical and chemical properties, structural architecture, and fluid-rock interactions associated with the actively deforming traces of the San Andreas Fault zone at depth. Exhumed outcrops within the SAF system comprised of serpentinite-bearing protolith are examined for comparison at San Simeon, Goat Rock State Park, and Nelson Creek, California. In the Phase …


Two-Dimensional Electron Gases At The Surface Of Potassium Tantalate, Ben Pound Aug 2014

Two-Dimensional Electron Gases At The Surface Of Potassium Tantalate, Ben Pound

Browse All Undergraduate research

No abstract provided.


Small Satellite Space Environments Effects Test Facility, Jr Dennison, Kent Hartley, Lisa Montierth Phillipps, Justin Dekany, James S. Dyer, Robert H. Johnson Aug 2014

Small Satellite Space Environments Effects Test Facility, Jr Dennison, Kent Hartley, Lisa Montierth Phillipps, Justin Dekany, James S. Dyer, Robert H. Johnson

Conference Proceedings

A versatile test facility has been designed and built to study space environments effects on small satellites and system components. Testing for potentially environmental-induced modifications of small satellites is critical to avoid possible deleterious or catastrophic effects over the duration of space mission. This is increasingly more important as small satellite programs have longer mission lifetimes, expand to more harsh environments (such as polar or geosynchronous orbits), make more diverse and sensitive measurements, minimize shielding to reduce mass, and utilize more compact and sensitive electronics (often including untested off-the-shelf components). The vacuum chamber described here is particularly well suited for …


Small Satellite Space Environments Effects Test Facility, Jr Dennison, Justin Dekany, Kent Hartley, James S. Dyer, Robert H. Johnson Aug 2014

Small Satellite Space Environments Effects Test Facility, Jr Dennison, Justin Dekany, Kent Hartley, James S. Dyer, Robert H. Johnson

Presentations

No abstract provided.


03 How To Find Normal Modes, Charles G. Torre Aug 2014

03 How To Find Normal Modes, Charles G. Torre

Foundations of Wave Phenomena

How do we find the normal modes and resonant frequencies without making a clever guess? Well, you can get a more complete explanation in an upper-level mechanics course, but the gist of the trick involves a little linear algebra. The idea is the same for any number of coupled oscillators, but let us stick to our example of two oscillators.