Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 82

Full-Text Articles in Entire DC Network

Fiber Optimization For Operation Beyond Transverse Mode Instability Limitations, Joshua Bradford Jan 2018

Fiber Optimization For Operation Beyond Transverse Mode Instability Limitations, Joshua Bradford

Electronic Theses and Dissertations

Transverse Mode Instabilities (TMIs) stand as a fundamental limitation to power and brightness scaling in laser systems based upon optical fiber technologies. This work comprises experimental and theoretical investigations into fiber laser design that should minimize the effects of Stimulated Thermal Rayleigh Scattering. Theoretical discussions and simulations focus on how fiber parameters affect transverse mode coupling. These include core geometry optimization, pump geometry optimization, in addition to the effects of HOM content and losses on the TMI threshold. Experimentally, a high-power laser facility is commissioned with beam quality diagnostics to quantify the thresholds of the onset of modal interferences and …


From Excited Charge Dynamics To Cluster Diffusion: Development And Application Of Techniques Beyond Dft And Kmc, Shree Ram Acharya Jan 2018

From Excited Charge Dynamics To Cluster Diffusion: Development And Application Of Techniques Beyond Dft And Kmc, Shree Ram Acharya

Electronic Theses and Dissertations

This dissertation focuses on developing reliable and accurate computational techniques which enable the examination of static and dynamic properties of various activated phenomena using deterministic and stochastic approaches. To explore ultrafast electron dynamics in materials with strong electron-electron correlation, under the influence of a laser pulse, an ab initio electronic structure method based on time-dependent density functional theory (TDDFT) in combination with dynamical mean field theory (DMFT) is developed and applied to: 1) single-band Hubbard model; 2) multi-band metal Ni; and 3) multi-band insulator MnO. The ultrafast demagnetization in Ni reveal the importance of memory and correlation effects, leading to …


Investigating Compositional Variations Of S-Complex Near-Earth Asteroids: (1627) Ivar, Jenna Jones Jan 2018

Investigating Compositional Variations Of S-Complex Near-Earth Asteroids: (1627) Ivar, Jenna Jones

Electronic Theses and Dissertations

We seek to investigate the complexity and heterogeneity of the surfaces of near-Earth asteroids (NEAs). In particular, we are studying the S-complex NEAs, which account for a large portion of the observed near-Earth objects. Here we present our results for (1627) Ivar, an Amor class NEA with taxonomic type Sqw. In 2013, Ivar's large size and close approach to Earth (minimum distance 0.32 AU) provided an opportunity to observe the asteroid over many different viewing angles for an extended period of time. We collected delay-Doppler radar images and Doppler spectra using the Arecibo Observatory's 2380 MHz radar, and, by incorporating …


Electronic, Optical, And Magnetic Properties Of Graphene And Single-Layer Transition Metal Dichalcogenides In The Presence Of Defects, Mahtab Khan Jan 2018

Electronic, Optical, And Magnetic Properties Of Graphene And Single-Layer Transition Metal Dichalcogenides In The Presence Of Defects, Mahtab Khan

Electronic Theses and Dissertations

Two-dimensional (2D) materials, such as graphene and single-layer (SL) transition metal dichalcogenides (TMDCs), have attracted a lot of attention due to their fascinating electronic and optical properties. Graphene was the first 2D material that has successfully been exfoliated from bulk graphite in 2004. In graphene, charge carriers interacting with the honeycomb lattice of carbon atoms of graphene to appear as massless Dirac fermions. Massless quasiparticles with linear dispersion are also observed in surface states of 3D topological insulators and quantum Hall edge states. My first project deals with the two-dimensional Hong-Ou-Mandel (HOM) type interference experiment for massless Dirac fermions in …


Polyelectrolyte Complexes Based On Poly(Acrylic Acid): Mechanics And Applications, Xiaoyan Lu Jan 2018

Polyelectrolyte Complexes Based On Poly(Acrylic Acid): Mechanics And Applications, Xiaoyan Lu

Electronic Theses and Dissertations

Poly(acrylic acid) (PAA) is a weak polyelectrolyte presenting negative charge at basic condition when the carboxylic group loses a proton. These carboxylate group can interact with polycations and metal ions to form stable polyelectrolyte complexes (PECs), leading to tunable properties and multifunctional nanoscale structures through chemical reactions. This research focuses on nanofiber and nanoparticle fabricated by PAA-based PECs. We demonstrated the effect of ferric ion concentration on the mechanical properties of PAA-based single naonofiber by using dark field microscopy imaging and persistence length analysis. The application of PAA-based nanofiber mats loaded with MnO2 for supercapacitors was also explored. As a …


Generation And Characterization Of Isolated Attosecond Pulse In The Soft X-Ray Regime, Jie Li Jan 2018

Generation And Characterization Of Isolated Attosecond Pulse In The Soft X-Ray Regime, Jie Li

Electronic Theses and Dissertations

The observation of any atomic and molecular dynamics requires a probe that has a timescale comparable to the dynamics itself. Ever since the invention of laser, the temporal duration of the laser pulse has been incrementally reduced from several nanoseconds to just attoseconds. Picosecond and femtosecond laser pulses have been widely used to study molecular rotation and vibration. In 2001, the first single isolated attosecond pulse (1 attosecond = 10^-18 seconds.) was demonstrated. Since this breakthrough, "attoscience" has become a hot topic in ultrafast physics. Attosecond pulses typically have span between EUV to X-ray photon energies and sub-femtosecond pulse duration. …


Integration Of Fundamental Research And Cer: The Role Of Authenticity In Developing Views On The Nature Of Teaching, Learning, And Doing Science, Julie Donnelly Jan 2018

Integration Of Fundamental Research And Cer: The Role Of Authenticity In Developing Views On The Nature Of Teaching, Learning, And Doing Science, Julie Donnelly

Electronic Theses and Dissertations

This dissertation is an integration of fundamental research and chemical education. It begins with two nonlinear spectroscopic studies of compounds important to the study of brain chemistry. In Chapter 2, we present a novel method using quantum mechanics for modelling ligand docking and the potential of nonlinear circular dichroism for elucidating the mechanism of cannabinoids docking to their receptor, a contribution to studies of varying psychological effects of cannabinoids. Considering existent challenges with measuring this phenomenon, in Chapter 3, we evaluate two-photon absorption properties of Thioflavin T (ThT) in varying glycerol/water content solutions and discuss the enhancement of nonlinear absorption …


Light Scattering Property Of Gold Nanoparticles With Applications To Biomolecule Detection And Analysis, Tianyu Zheng Jan 2018

Light Scattering Property Of Gold Nanoparticles With Applications To Biomolecule Detection And Analysis, Tianyu Zheng

Electronic Theses and Dissertations

Gold nanoparticles (AuNPs) have unique optical and chemical properties. Dynamic light scattering (DLS) is an analytical tool used routinely for nanoparticle size measurement. The combined use of AuNPs and DLS has led to a novel analytical assay technology called D2Dx (from diameter to diagnostics). Herein, my dissertation highlights the extended use of D2Dx for biomolecule detection and analysis. Under this general theme, Chapter 1 provides some background information of AuNPs, DLS, the principle of D2Dx technique and its potential applications. Chapter 2 summarizes a study on the effect of AuNP concentrations and laser power on the hydrodynamic size measurement of …


2 Micron Fiber Lasers: Power Scaling Concepts And Limitations, Alex Sincore Jan 2018

2 Micron Fiber Lasers: Power Scaling Concepts And Limitations, Alex Sincore

Electronic Theses and Dissertations

Thulium- and holmium-doped fiber lasers (TDF and HDF) emitting at 2 micron offer unique benefits and applications compared to common ytterbium-doped 1 micron lasers. This dissertation details the concepts, limitations, design, and performance of four 2 micron fiber laser systems. While these lasers were developed for various end-uses, they also provide further insight into two major power scaling limitations. The first limitation is optical nonlinearities: specifically stimulated Brillouin scattering (SBS) and modulation instability (MI). The second limitation is thermal failure due to inefficient pump conversion. First, a 21.5 W single-frequency, single-mode laser with adjustable output from continuous-wave to nanosecond pulses …


Single Mode Wavelength-Tunable Thulium Fiber, Dong Jin Shin Jan 2018

Single Mode Wavelength-Tunable Thulium Fiber, Dong Jin Shin

Electronic Theses and Dissertations

Thulium fiber lasers have the broadest emission wavelength bandwidth out of any rare-earth doped fiber lasers. The emission wavelength starts from 1.75μm and ends at around 2.15μm, covering a vast swath of the eye safe wavelength region and intersecting with a large portion of mid-infrared atmospheric transmission window. Also, thulium fiber lasers provide the highest average output power of any other rare-earth doped fiber lasers in these wavelength regimes, making them uniquely suited for applications such as remote sensing. At the moment, high power beam propagation of continuous wave laser through the atmosphere in the mid-infrared range is yet to …


Cavity-Coupled Plasmonic Systems For Enhanced Light-Matter Interactions, Abraham Vazquez-Guardado Jan 2018

Cavity-Coupled Plasmonic Systems For Enhanced Light-Matter Interactions, Abraham Vazquez-Guardado

Electronic Theses and Dissertations

Light-matter interaction is a pivotal effect that involves the synergetic interplay of electromag- netic fields with fundamental particles. In this regard localized surface plasmons (LSP) arise from coherent interaction of the electromagnetic field with the collective oscillation of free electrons in confined sub-wavelength environments. Their most attractive properties are strong field en- hancements at the near field, highly inhomogeneous, peculiar temporal and spatial distributions and unique polarization properties. LSP systems also offer a unique playground for fundamental electromagnetic physics where micro-scale systemic properties can be studied in the macro-scale. These important properties and opportunities are brought up in this work …


Liquid Crystal Phase Modulation For Beam Steering And Near-Eye Displays, Yun-Han Lee Jan 2018

Liquid Crystal Phase Modulation For Beam Steering And Near-Eye Displays, Yun-Han Lee

Electronic Theses and Dissertations

Liquid crystal spatial phase modulator plays an important role in laser beam steering, wave-front shaping and correction, optical communication, optical computation and holography. One fundamental limitation lays in the response time of liquid crystal reorientation. To achieve fast response time, polymer-network liquid crystals are therefore proposed. By incorporating polymer network in a liquid crystal host, the response time can be reduced by a factor of 100. However, the polymer network introduces hysteresis, light scattering, and high voltage. The motivation for a fast-response liquid crystal phase modulator will be discussed in the first chapter. In the second chapter, we introduce our …


Analysis Of Large-Scale Population Genetic Data Using Efficient Algorithms And Data Structures, Ardalan Naseri Jan 2018

Analysis Of Large-Scale Population Genetic Data Using Efficient Algorithms And Data Structures, Ardalan Naseri

Electronic Theses and Dissertations

With the availability of genotyping data of very large samples, there is an increasing need for tools that can efficiently identify genetic relationships among all individuals in the sample. Modern biobanks cover genotypes up to 0.1%-1% of an entire large population. At this scale, genetic relatedness among samples is ubiquitous. However, current methods are not efficient for uncovering genetic relatedness at such a scale. We developed a new method, Random Projection for IBD Detection (RaPID), for detecting Identical-by-Descent (IBD) segments, a fundamental concept in genetics in large panels. RaPID detects all IBD segments over a certain length in time linear …


Relating First-Person And Third-Person Vision, Shervin Ardeshir Behrostaghi Jan 2018

Relating First-Person And Third-Person Vision, Shervin Ardeshir Behrostaghi

Electronic Theses and Dissertations

Thanks to the availability and increasing popularity of wearable devices such as GoPro cameras, smart phones and glasses, we have access to a plethora of videos captured from the first person (egocentric) perspective. Capturing the world from the perspective of one's self, egocentric videos bear characteristics distinct from the more traditional third-person (exocentric) videos. In many computer vision tasks (e.g. identification, action recognition, face recognition, pose estimation, etc.), the human actors are the main focus. Hence, detecting, localizing, and recognizing the human actor is often incorporated as a vital component. In an egocentric video however, the person behind the camera …


Examining Users' Application Permissions On Android Mobile Devices, Muhammad Safi Jan 2018

Examining Users' Application Permissions On Android Mobile Devices, Muhammad Safi

Electronic Theses and Dissertations

Mobile devices have become one of the most important computing platforms. The platform's portability and highly customized nature raises several privacy concerns. Therefore, understanding and predicting user privacy behavior has become very important if one is to design software which respects the privacy concerns of users. Various studies have been carried out to quantify user perceptions and concerns [23,36] and user characteristics which may predict privacy behavior [21,22,25]. Even though significant research exists regarding factors which affect user privacy behavior, there is gap in the literature when it comes to correlating these factors to objectively collected data from user devices. …


Far-Infrared Bands In Plasmonic Metal-Insulator-Metal Absorbers Optimized For Long Wave Infrared, Rachel Evans Jan 2018

Far-Infrared Bands In Plasmonic Metal-Insulator-Metal Absorbers Optimized For Long Wave Infrared, Rachel Evans

Electronic Theses and Dissertations

Metal–insulator–metal (MIM) resonant absorbers comprise a conducting ground plane, a thin dielectric, and thin separated metal top-surface structures. Long-wave infrared (LWIR) fundamental absorptions are experimentally shown to be optimized for a ratio of dielectric thickness to top-structure dimension t/l > 0.08. The fundamental resonance wavelength is predicted by different analytic standing-wave theories to be ~2nl, where n is the dielectric refractive index. Thus, for the dielectrics SiO2, AlN, and TiO2, l values of a few microns give fundamentals in the 8-12 micron LWIR wavelength region. Agreement of observed fundamental resonance wavelength with theory is better for t/l > ~0.2. Harmonics at shorter …


Visionary Ophthalmics: Confluence Of Computer Vision And Deep Learning For Ophthalmology, Dustin Morley Jan 2018

Visionary Ophthalmics: Confluence Of Computer Vision And Deep Learning For Ophthalmology, Dustin Morley

Electronic Theses and Dissertations

Ophthalmology is a medical field ripe with opportunities for meaningful application of computer vision algorithms. The field utilizes data from multiple disparate imaging techniques, ranging from conventional cameras to tomography, comprising a diverse set of computer vision challenges. Computer vision has a rich history of techniques that can adequately meet many of these challenges. However, the field has undergone something of a revolution in recent times as deep learning techniques have sprung into the forefront following advances in GPU hardware. This development raises important questions regarding how to best leverage insights from both modern deep learning approaches and more classical …


Personalized Digital Body: Enhancing Body Ownership And Spatial Presence In Virtual Reality, Sungchul Jung Jan 2018

Personalized Digital Body: Enhancing Body Ownership And Spatial Presence In Virtual Reality, Sungchul Jung

Electronic Theses and Dissertations

person's sense of acceptance of a virtual body as his or her own is generally called virtual body ownership (VBOI). Having such a mental model of one's own body transferred to a virtual human surrogate is known to play a critical role in one's sense of presence in a virtual environment. Our focus in this dissertation is on top-down processing based on visual perception in both the visuomotor and the visuotactile domains, using visually personalized body cues. The visual cues we study here range from ones that we refer to as direct and others that we classify as indirect. Direct …


Nonlinear Dynamics In Multimode Optical Fibers, Mohammad Amin Eftekhar Jan 2018

Nonlinear Dynamics In Multimode Optical Fibers, Mohammad Amin Eftekhar

Electronic Theses and Dissertations

Multimode optical fibers have recently reemerged as a viable platform for addressing a number of long-standing issues associated with information bandwidth requirements and power-handling capabilities. The complex nature of heavily multimoded systems can be effectively exploited to observe altogether novel physical effects arising from spatiotemporal and intermodal linear and nonlinear processes. Here, we have studied nonlinear dynamics in multimode optical fibers (MMFs) in both the normal and anomalous dispersion regimes. In the anomalous dispersion regime, the nonlinearity leads to a formation of spatiotemporal 3-D solitons. Unlike in single-mode fibers, these solitons are not unique and their properties can be modified …


Split Aptameric Turn-On Fluorescence Sensor For Detection Of Sequence Specific Nucleic Acid At Ambient Temperature, Nanami Kikuchi Jan 2018

Split Aptameric Turn-On Fluorescence Sensor For Detection Of Sequence Specific Nucleic Acid At Ambient Temperature, Nanami Kikuchi

Electronic Theses and Dissertations

Nucleic acid amplification tests (NAATs) enable sensitive detection of low density infections that microscopy and rapid diagnostic test are not capable of detecting. They enable quantitative and qualitative nucleic acid detection, genotype analysis, and single nucleotide polymorphism (SNP) detection. Current state of the art molecular probes used with NAATs includes molecular beacon (MB), Taqman and its variations. This work presents novel molecular probe designed from Spinach and Dapoxyl aptamers. The aptamers are split into two parts (split aptamer), allowing greater sensitivity and selectivity towards fully complementary nucleic acid analyte. The major advantage of split aptamer probe over state-of-the-art fluorescent probes …


Optical Properties Of Single Nanoparticles And Two-Dimensional Arrays Of Plasmonic Nanostructures, Yadong Zhou Jan 2018

Optical Properties Of Single Nanoparticles And Two-Dimensional Arrays Of Plasmonic Nanostructures, Yadong Zhou

Electronic Theses and Dissertations

The tunability of plasmonic properties of nanomaterials makes them promising in many applications such as molecular detection, spectroscopy techniques, solar energy materials, etc. In the thesis, we mainly focus on the interaction between light with single nanoparticles and two-dimensional plasmonic nanostructures using electrodynamic methods. The fundamental equations of electromagnetic theory: Maxwell's equations are revisited to solve the problems of light-matter interaction, particularly the interaction of light and noble nanomaterials, such as gold and silver. In Chapter 1, Stokes parameters that describe the polarization states of electromagnetic wave are presented. The scattering and absorption of a particle with an arbitrary shape …


Design, Synthesis, Stability, And Photocatalytic Studies Of Sustainable Metal-Organic Frameworks, Matthew Logan Jan 2018

Design, Synthesis, Stability, And Photocatalytic Studies Of Sustainable Metal-Organic Frameworks, Matthew Logan

Electronic Theses and Dissertations

The presented dissertation focuses on the design, synthesis, and characterization of metal-organic frameworks (MOFs) composed of earth-abundant elements the exhibit photoredox activity and studied their application as heterogeneous photocatalysts in organic synthesis and in solar-to-chemical energy conversion. In particular, the structure-property relationships of titanium-based MOFs relating the structure of the organic building unit and the photophysical and photochemical activity of the solid material is studied. The first novel family of seven MOFs isoreticular to MIL-125-NH2, includes functionalized with N-alkyl groups with increasing chain length (methyl to heptyl) and with varying connectivity (primary or secondary). The functionalized materials displayed reduced optical …


Practical Dynamic Transactional Data Structures, Pierre Laborde Jan 2018

Practical Dynamic Transactional Data Structures, Pierre Laborde

Electronic Theses and Dissertations

Multicore programming presents the challenge of synchronizing multiple threads. Traditionally, mutual exclusion locks are used to limit access to a shared resource to a single thread at a time. Whether this lock is applied to an entire data structure, or only a single element, the pitfalls of lock-based programming persist. Deadlock, livelock, starvation, and priority inversion are some of the hazards of lock-based programming that can be avoided by using non-blocking techniques. Non-blocking data structures allow scalable and thread-safe access to shared data by guaranteeing, at least, system-wide progress. In this work, we present the first wait-free hash map which …


Necessary Conditions For Open-Ended Evolution, Lisa Soros Jan 2018

Necessary Conditions For Open-Ended Evolution, Lisa Soros

Electronic Theses and Dissertations

Evolution on Earth is widely considered to be an effectively endless process. Though this phenomenon of open-ended evolution (OEE) has been a topic of interest in the artificial life community since its beginnings, the field still lacks an empirically validated theory of what exactly is necessary to reproduce the phenomenon in general (including in domains quite unlike Earth). This dissertation (1) enumerates a set of conditions hypothesized to be necessary for OEE in addition to (2) introducing an artificial life world called Chromaria that incorporates each of the hypothesized necessary conditions. It then (3) describes a set of experiments with …


Analysis And Design Of Non-Hermitian Optical Systems, Ali Kazemi Jahromi Jan 2018

Analysis And Design Of Non-Hermitian Optical Systems, Ali Kazemi Jahromi

Electronic Theses and Dissertations

From a very general perspective, optical devices can be viewed as constructions based on the spatial engineering of the optical index of refraction. Sculpting the real part of the refractive index produces the wide variety of known passive optical devices, such as waveguides, resonators, gratings, among a plethora of other possibilities for managing the transport of light. Less attention has been directed to engineering the imaginary part of the refractive index – that is responsible for optical gain and absorption – in conjunction with the real part of the refractive index. Optical gain is the building block of amplifiers and …


On Saturation Numbers Of Ramsey-Minimal Graphs, Hunter M. Davenport Jan 2018

On Saturation Numbers Of Ramsey-Minimal Graphs, Hunter M. Davenport

Honors Undergraduate Theses

Dating back to the 1930's, Ramsey theory still intrigues many who study combinatorics. Roughly put, it makes the profound assertion that complete disorder is impossible. One view of this problem is in edge-colorings of complete graphs. For forbidden graphs H1,...,Hk and a graph G, we write G "arrows" (H1,...,Hk) if every k-edge-coloring of G contains a monochromatic copy of Hi in color i for some i=1,2,...,k. If c is a (red, blue)-edge-coloring of G, we say c is a bad coloring if G contains no red K3or blue K …


Systematic Review And Meta-Analysis: Tuberculosis, Tnfα Inhibitors, And Crohn's Disease, Brent L. Cao Jan 2018

Systematic Review And Meta-Analysis: Tuberculosis, Tnfα Inhibitors, And Crohn's Disease, Brent L. Cao

Honors Undergraduate Theses

Inflammation is often a protective reaction against harmful foreign agents. However, in many disease conditions, the mechanisms behind the inflammatory response are poorly understood. Often times, the inflammation causes adverse effects, such as joint pain, abdominal pain, fever, fatigue, and loss of appetite. Thus, many treatments aim to inhibit the inflammatory response in order to control adverse symptoms. Such treatments include TNFα inhibitors. However, a major risk associated with drugs inhibiting tumor necrosis factor alpha (TNFα) is serious infection, including tuberculosis (TB).

Anti-TNFα therapy is used to treat patients with Crohn’s disease, for which the risk of tuberculosis may be …


The Effect Of Mismatch Primers On The Efficiency Of Amplification In Quantitative Polymerase Chain Reactions, Molly C. Dawkins Jan 2018

The Effect Of Mismatch Primers On The Efficiency Of Amplification In Quantitative Polymerase Chain Reactions, Molly C. Dawkins

Honors Undergraduate Theses

Polymerase chain reaction (PCR) is a method used in many research protocols to amplify a small amount of a short segment of DNA to millions of copies. PCR is used for many taxonomic studies, as well as for some medical diagnostic procedures. Through PCR, short DNA primers bind to the template DNA to allow the thermostable DNA polymerase to copy the DNA. Often, researchers create universal primers to target a conserved region of DNA in multiple species, for example, the 16S rRNA gene in bacteria. The problem with these universal primers is that they do not always perfectly match the …


A Case-Study Of The African Leopard (Panthera Pardus Pardus) Population On The Nambiti Private Game Reserve, Erica Castaneda Jan 2018

A Case-Study Of The African Leopard (Panthera Pardus Pardus) Population On The Nambiti Private Game Reserve, Erica Castaneda

Honors Undergraduate Theses

The Nambiti Private Game Reserve in KwaZulu-Natal, South Africa is a nature reserve that aids in the conservation of some of the world’s most renown species. This includes members of the "Big Five," which is comprised of the African lion (Panthera leo), the African elephant (Loxidonta africana), the Cape buffalo (Syncerus caffer), the black & white rhinoceroses (Diceros bicornis and Ceratotherium simum, respectively), and the African leopard (Panthera pardus pardus). These animals represent the top five African animals desired by trophy hunters and by tourists hoping to view wildlife (Caro …


Climate Modeling, Outgoing Longwave Radiation, And Tropical Cyclone Forecasting, Thomas Rechtman Jan 2018

Climate Modeling, Outgoing Longwave Radiation, And Tropical Cyclone Forecasting, Thomas Rechtman

Honors Undergraduate Theses

Climate modeling and tropical cyclone forecasting are two significant is- sues that are continuously being improved upon for more accurate weather forecasting and preparedness. In this thesis, we have studied three climate models and formulated a new model with a view to determine the outgoing longwave radiation (OLR) budget at the top of the atmosphere (TOA) as ob- served by the National Oceanic and Atmospheric Administration’s (NOAA) satellite based Advanced Very High Resolution Radiometer (AVHRR). In 2006, Karnauskas proposed the African meridional OLR as an Atlantic hur- ricane predictor, the relation was further proven in 2016 by Karnauskas and Li …