Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Dissecting The Roles Of Human Smc Complexes In Transcription Regulation And Chromatin Organization, Ruoyu Wang Aug 2019

Dissecting The Roles Of Human Smc Complexes In Transcription Regulation And Chromatin Organization, Ruoyu Wang

Dissertations & Theses (Open Access)

Metazoans utilize a constellation of distal regulatory elements to control gene transcription, and therefore they have to forge highly complex chromatin loops to spatially bridge these regulatory elements and genes in the three-dimensional (3D) genome. However, the hierarchy of chromatin contacts and their underlying mechanisms are not well-understood. SMC complexes including Cohesin complex and Condensin complex has been widely proposed to organize 3D genome structure, and further regulate metazoans’ gene transcription. Here, we aim to dissect the direct functions of SMC complexes (both Cohesin and Condensin) in transcriptional regulation and 3D genome organization, by utilizing an inducible protein degradation system. …


Divergent Transcriptional Regulation Of Suppressors Of Cytokine Signaling Genes In Adipocytes, Paula Mota De Sa Jun 2019

Divergent Transcriptional Regulation Of Suppressors Of Cytokine Signaling Genes In Adipocytes, Paula Mota De Sa

LSU Doctoral Dissertations

The Janus Kinase - Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway transduces several signals crucial for development and homeostasis. Suppressors of cytokine signaling (SOCS) proteins control JAK-STAT signaling via a negative feedback loop. The transcription factor STAT5 is known to play a significant role in fat cell development and function, and several studies suggest that acetylation may affect STAT5 transcriptional activity. To test this hypothesis, we treated 3T3-L1 adipocytes with growth hormone (GH) to activate STAT5 in the presence or absence of histone deacetylase (HDAC) inhibitors. STAT5 acetylation levels were low in adipocytes and mostly unchanged by the …


Protein Degradation Regulates Phospholipid Biosynthetic Gene Expression In Saccharomyces Cerevisiae, Bryan Salas-Santiago Mar 2019

Protein Degradation Regulates Phospholipid Biosynthetic Gene Expression In Saccharomyces Cerevisiae, Bryan Salas-Santiago

Doctoral Dissertations

Transcriptional regulation of most phospholipid biosynthetic genes in Saccharomyces cerevisiae is coordinated by inositol and choline. Inositol affects phosphatidic acid (PA) intracellular levels. Opi1p interacts physically with PA and is the main repressor of the phospholipid biosynthetic genes. It is localized in the endoplasmic reticulum (ER) bound to the ER membrane protein Scs2p. When PA levels drop, Opi1p is translocated into the nucleus repressing most phospholipid biosynthetic genes. The OPI1 locus was identified in a screen looking for overproduction and excretion of inositol (Opi-). Opi- mutants are generally associated with a defect in …


Premature Rho-Dependent Transcription Termination In Escherichia Coli : Link To Translation And Gene Regulation, Gabriele Baniulyte Jan 2019

Premature Rho-Dependent Transcription Termination In Escherichia Coli : Link To Translation And Gene Regulation, Gabriele Baniulyte

Legacy Theses & Dissertations (2009 - 2024)

Transcription termination factor Rho is an essential protein in Escherichia coli and related bacteria. The primary function of Rho is to clear unproductive RNA polymerases from the DNA template to minimize negative effects associated with uncontrolled transcription. Although most of the Rho termination events are constitutive, premature Rho-mediated termination was observed at 3% of all affected transcripts indicating active regulation of Rho activity. In this work, we investigated the regulatory mechanism behind premature Rho-dependent transcription termination in two unrelated genes: suhB and topAI. We show that in both cases transcription is terminated inside the coding gene as a consequence of …


Transcriptional Regulation Of Dksa In E. Coli, Daniel Thomas Woods Jan 2019

Transcriptional Regulation Of Dksa In E. Coli, Daniel Thomas Woods

Legacy Theses & Dissertations (2009 - 2024)

DksA is a global transcription factor that binds RNAP directly to regulate the expression of many genes and operons, including ribosomal RNA, in a ppGpp-dependent or ppGpp–independent manner. It is also involved in facilitating the process of DNA replication by removing stalled transcription elongation complexes that could block the progress of the replication fork. In addition, DksA is important for colonization, establishment of biofilms, and pathogenesis. In order to sustain these various functions, an adequate level of cellular DksA is required. This work tested the hypothesis that the E. coli dksA is substantially regulated at the level of transcription. Using …