Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 37

Full-Text Articles in Entire DC Network

The Role Of The Cdk8 Kinase Module In Maintaining Proteostasis, Stephen Willis Jan 2024

The Role Of The Cdk8 Kinase Module In Maintaining Proteostasis, Stephen Willis

Theses and Dissertations

The underlying etiology of numerous disease states results from perturbations in the maintenance of cellular proteostasis. Carcinogenesis relies on these perturbations to foster uncontrolled cell growth and eventual metastases, while neurodegenerative diseases are a consequence of such perturbations. Control of these processes occurs at numerous molecular levels, commonly starting with transcription. A key transcriptional complex that is involved is the CDK8 Kinase Module (CKM). The CKM is conserved from yeast to man, forming a tetrameric complex consisting of MED12, MED13, CDK8, and CCNC. The CKM has not only been implicated in a variety of cancers but also in a spectrum …


Determining The Roles Of The Oligomerization And C-Terminal Domains In Mutant P53 Gain-Of-Function Activities, George K. Annor Sep 2022

Determining The Roles Of The Oligomerization And C-Terminal Domains In Mutant P53 Gain-Of-Function Activities, George K. Annor

Dissertations, Theses, and Capstone Projects

The tumor suppressor p53 (TP53) gene is often mutated in cancer, with missense mutations found in the central DNA binding domain, and less often in the oligomerization domain (OD) and C-terminal domain (CTD). The OD and CTD have been found to be critical for the tumor suppressor functionality of wild-type p53 (wtp53). Specific missense mutations in the DNA binding domain have been found to confer new gain-of-function (GOF) activities. Mutations that destabilize tetramer formation, or deletion of key lysine residues within the CTD, downregulate the ability of wtp53 to transactivate (increase the rate of transcription of) its target …


Rna Polymerase Binding Protein A (Rbpa) Regulation Of Mycobacteria Transcription And Sensitivity To Fidaxomicin, Jerome Prusa Aug 2021

Rna Polymerase Binding Protein A (Rbpa) Regulation Of Mycobacteria Transcription And Sensitivity To Fidaxomicin, Jerome Prusa

Arts & Sciences Electronic Theses and Dissertations

Mycobacterium tuberculosis is the causative agent of the disease tuberculosis (TB) and remains one of the deadliest microorganisms on the planet. The effort to eradicate M. tuberculosis would benefit from the development of novel therapeutics, which requires a detailed understanding of M. tuberculosis physiology. Like all living organisms, M. tuberculosis gene expression requires transcription. Transcription in the phylum Actinobacteria, which includes mycobacteria, is unique because it includes RNA Polymerase Binding Protein A (RbpA) that is essential in both M. tuberculosis and the nonpathogenic model organism Mycobacterium smegmatis. RbpA increases the housekeeping A and housekeeping like B interactions with the RNA …


Cyclin C Determines Cell Fate In Response To Oxidative Stress And Proteasome Inhibition, David C. Stieg May 2021

Cyclin C Determines Cell Fate In Response To Oxidative Stress And Proteasome Inhibition, David C. Stieg

Graduate School of Biomedical Sciences Theses and Dissertations

In response to various sources of cellular stress, the coordination of intracellular events is necessary to elicit the appropriate molecular response. In particular, the reprogramming of gene expression by stress-specific transcription factors drives the activation of signaling pathways, triggering either cell survival or regulated cell death pathways. The Cdk8 kinase module (CKM) is a highly conserved transcriptional regulatory complex with a role in this decision. The CKM is composed of Cdk8, its activating partner cyclin C, and two scaffold proteins, Med12 and Med13. The CKM is a detachable subunit of the Mediator complex, which interacts with RNA polymerase II to …


P53 Drives A Transcriptional Program That Elicits A Non-Cell-Autonomous Response And Alters Cell State In Vivo, Sydney Moyer Dec 2020

P53 Drives A Transcriptional Program That Elicits A Non-Cell-Autonomous Response And Alters Cell State In Vivo, Sydney Moyer

Dissertations & Theses (Open Access)

Cell stress and DNA damage activate the tumor suppressor p53, triggering transcriptional activation of a myriad of target genes. The molecular, morphological, and physiological consequences of this activation remain poorly understood in vivo. We activated a p53 transcriptional program in mice by deletion of Mdm2, a gene which encodes the major p53 inhibitor. By overlaying tissue-specific RNA-sequencing data from pancreas, small intestine, ovary, kidney, and heart with existing p53 ChIP-sequencing, we identified a large repertoire of tissue-specific p53 genes and a common p53 transcriptional signature of seven genes which included Mdm2 but not p21. Global p53 activation …


New Mechanisms That Regulate Dna Double-Strand Break-Induced Gene Silencing And Genome Integrity, Dante Francis Deascanis Oct 2020

New Mechanisms That Regulate Dna Double-Strand Break-Induced Gene Silencing And Genome Integrity, Dante Francis Deascanis

USF Tampa Graduate Theses and Dissertations

Proliferating cells are constantly threatened by genotoxic stressors that can potentially lead to genomic instability. Breaks in the DNA, namely double-strand breaks, are detrimental sources of damage that must be repaired to maintain genomic integrity and prevent potential tumorigenesis. Here we discuss a gene silencing mechanism flanking damaged chromatin. Gene silencing and transcriptional repression at damaged DNA are necessary to prevent potential genomic aberrations from occurring through conflicts with the DNA repair machinery. BMI1, a core polycomb protein in the polycomb repressive complex 1 (PRC1) has been known to play a role in gene silencing at damaged chromatin. However, the …


Changes In Gene Expression Profiles In Müller Glia Following Exposure To An Α7 Nicotinic Acetylcholine Receptor Agonist, Megan L. Stanchfield Jul 2020

Changes In Gene Expression Profiles In Müller Glia Following Exposure To An Α7 Nicotinic Acetylcholine Receptor Agonist, Megan L. Stanchfield

Masters Theses

Previous studies from this lab have determined that dedifferentiation of Müller glia (MG) occurs after application of an α7 nicotinic acetylcholine receptor agonist, PNU-282987 (PNU), to retinal pigment epithelial (RPE) cells in adult rodents. This study was designed to explore the role of the HB-EGF/Ascl1/Lin28a signaling pathway in MG dedifferentiation to retinal progenitor cells. RNAseq was performed on MG following contact with RPE-J cells treated with PNU-282987. Up- or down-regulated genes were compared with published literature of MG dedifferentiation that occurs in lower vertebrate regeneration or with transcript profiles during early mammalian development. Between 8-12 hours, up-regulation was observed in …


Genome Maintenance Roles Of Polycomb Transcriptional Repressors Bmi1 And Rnf2, Anthony Richard Sanchez Iv Jun 2020

Genome Maintenance Roles Of Polycomb Transcriptional Repressors Bmi1 And Rnf2, Anthony Richard Sanchez Iv

USF Tampa Graduate Theses and Dissertations

The coordination of transcription, replication, and DNA damage response (DDR) is vital for maintaining normal cellular homeostasis. All of these processes take place on the chromatin and thus, the temporal and spatial separation of the factors responsible are necessary for each to be correctly completed. Here we detail several novel processes contributing to this network.

BMI1 is a component of the Polycomb Repressive Complex 1 (PRC1) which plays a key role in maintaining epigenetic silencing programs during development. Recently, BMI1 and other members of PRC1 like RNF2 have been implicated gene silencing during the DDR; however, the mechanism through which …


Probing The Limits Of Singular Gene Expression Through The Activity Of High Representation Odorant Receptor Transgenes, Eugene Lempert Jun 2020

Probing The Limits Of Singular Gene Expression Through The Activity Of High Representation Odorant Receptor Transgenes, Eugene Lempert

Dissertations, Theses, and Capstone Projects

Singular gene expression is a common phenomenon in biology, making its appearance in immunoglobulin selection, protocadherin expression, X chromosome-inactivation, random monoallelic expression, and olfactory receptor choice. Singularity involves an activation and a feedback step. The mechanisms of singular gene choice have some capacity to integrate additional member genes while still maintaining singularity, but will activate an additional member if an earlier choice was incapable of triggering the feedback step. Odorant Receptor (OR) genes are substantially divergent from each other in terms of coding sequence, promoter structure, and genomic locus, all of which plays a role in how many Olfactory Sensory …


Investigating The Redox Sensitivity Of Mitf Splice Variants, Rachel Berryman May 2020

Investigating The Redox Sensitivity Of Mitf Splice Variants, Rachel Berryman

Senior Theses

Within pigment-producing cells known as melanocytes, the transcription factor MITF is intimately involved in regulating genes associated with cell cycle maintenance and melanocyte differentiation. Research, however, has provided conflicting results on the relationship between the expression levels of MITF and melanocyte cell fate. To complicate matters, two splice variants of MITF exist, differing by only 18 base pairs. These variants have been observed at variable levels of expression in melanocyte and melanoma cells, raising the question as to their functional purpose. Building upon previous research by the Leachman/Cassidy lab that identified the redox sensitivity of MITF while additionally establishing a …


Termination-Independent Role Of Rat1 In Cotranscriptional Splicing In Budding Yeast, Zuzer Hakimuddin Dhoondia Jan 2020

Termination-Independent Role Of Rat1 In Cotranscriptional Splicing In Budding Yeast, Zuzer Hakimuddin Dhoondia

Wayne State University Dissertations

Rat1 is a 5′→3′ exoribonuclease in budding yeast belonging to the XRN-family of nucleases. It is a highly conserved protein with homologs being present in fission yeast, flies, worms, mice and humans. Rat1 and its homolog in metazoan have been shown to function in multiple facets of RNA metabolism. In this study, we report a novel role of Rat1 in splicing of pre-mRNA in budding yeast. In the absence of the functional Rat1 in the nucleus, an increase in the level of unspliced transcripts was observed in yeast cells. Strand-specific TRO analysis revealed that the accumulation of unspliced transcripts upon …


Launching The Next Generation : Transcriptional Regulation During Oogenesis, Alicia K. Mccarthy Jan 2020

Launching The Next Generation : Transcriptional Regulation During Oogenesis, Alicia K. Mccarthy

Legacy Theses & Dissertations (2009 - 2024)

Germ cells give rise to gametes and link generations by passing genetic information from parent to offspring. Gametes arise from, in many sexually reproducing organisms, germline stem cells (GSCs) which are set aside early during development. GSCs have an amazing capacity to undergo self-renewal to give rise to a pool of undifferentiated cells, while also differentiating to generate specialized germ cells such as haploid gametes. Upon female GSC differentiation, mitotically dividing germ cells can initiate meiosis, and mature within a follicle. During maturation, the specified oocyte is provided with a trust fund of RNAs and proteins for the next generation …


Dissecting The Roles Of Human Smc Complexes In Transcription Regulation And Chromatin Organization, Ruoyu Wang Aug 2019

Dissecting The Roles Of Human Smc Complexes In Transcription Regulation And Chromatin Organization, Ruoyu Wang

Dissertations & Theses (Open Access)

Metazoans utilize a constellation of distal regulatory elements to control gene transcription, and therefore they have to forge highly complex chromatin loops to spatially bridge these regulatory elements and genes in the three-dimensional (3D) genome. However, the hierarchy of chromatin contacts and their underlying mechanisms are not well-understood. SMC complexes including Cohesin complex and Condensin complex has been widely proposed to organize 3D genome structure, and further regulate metazoans’ gene transcription. Here, we aim to dissect the direct functions of SMC complexes (both Cohesin and Condensin) in transcriptional regulation and 3D genome organization, by utilizing an inducible protein degradation system. …


Divergent Transcriptional Regulation Of Suppressors Of Cytokine Signaling Genes In Adipocytes, Paula Mota De Sa Jun 2019

Divergent Transcriptional Regulation Of Suppressors Of Cytokine Signaling Genes In Adipocytes, Paula Mota De Sa

LSU Doctoral Dissertations

The Janus Kinase - Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway transduces several signals crucial for development and homeostasis. Suppressors of cytokine signaling (SOCS) proteins control JAK-STAT signaling via a negative feedback loop. The transcription factor STAT5 is known to play a significant role in fat cell development and function, and several studies suggest that acetylation may affect STAT5 transcriptional activity. To test this hypothesis, we treated 3T3-L1 adipocytes with growth hormone (GH) to activate STAT5 in the presence or absence of histone deacetylase (HDAC) inhibitors. STAT5 acetylation levels were low in adipocytes and mostly unchanged by the …


Protein Degradation Regulates Phospholipid Biosynthetic Gene Expression In Saccharomyces Cerevisiae, Bryan Salas-Santiago Mar 2019

Protein Degradation Regulates Phospholipid Biosynthetic Gene Expression In Saccharomyces Cerevisiae, Bryan Salas-Santiago

Doctoral Dissertations

Transcriptional regulation of most phospholipid biosynthetic genes in Saccharomyces cerevisiae is coordinated by inositol and choline. Inositol affects phosphatidic acid (PA) intracellular levels. Opi1p interacts physically with PA and is the main repressor of the phospholipid biosynthetic genes. It is localized in the endoplasmic reticulum (ER) bound to the ER membrane protein Scs2p. When PA levels drop, Opi1p is translocated into the nucleus repressing most phospholipid biosynthetic genes. The OPI1 locus was identified in a screen looking for overproduction and excretion of inositol (Opi-). Opi- mutants are generally associated with a defect in …


Premature Rho-Dependent Transcription Termination In Escherichia Coli : Link To Translation And Gene Regulation, Gabriele Baniulyte Jan 2019

Premature Rho-Dependent Transcription Termination In Escherichia Coli : Link To Translation And Gene Regulation, Gabriele Baniulyte

Legacy Theses & Dissertations (2009 - 2024)

Transcription termination factor Rho is an essential protein in Escherichia coli and related bacteria. The primary function of Rho is to clear unproductive RNA polymerases from the DNA template to minimize negative effects associated with uncontrolled transcription. Although most of the Rho termination events are constitutive, premature Rho-mediated termination was observed at 3% of all affected transcripts indicating active regulation of Rho activity. In this work, we investigated the regulatory mechanism behind premature Rho-dependent transcription termination in two unrelated genes: suhB and topAI. We show that in both cases transcription is terminated inside the coding gene as a consequence of …


Transcriptional Regulation Of Dksa In E. Coli, Daniel Thomas Woods Jan 2019

Transcriptional Regulation Of Dksa In E. Coli, Daniel Thomas Woods

Legacy Theses & Dissertations (2009 - 2024)

DksA is a global transcription factor that binds RNAP directly to regulate the expression of many genes and operons, including ribosomal RNA, in a ppGpp-dependent or ppGpp–independent manner. It is also involved in facilitating the process of DNA replication by removing stalled transcription elongation complexes that could block the progress of the replication fork. In addition, DksA is important for colonization, establishment of biofilms, and pathogenesis. In order to sustain these various functions, an adequate level of cellular DksA is required. This work tested the hypothesis that the E. coli dksA is substantially regulated at the level of transcription. Using …


Characterizing The Recognition Motif And Novel Substrates Of Carm1, Sitaram Gayatri Jul 2018

Characterizing The Recognition Motif And Novel Substrates Of Carm1, Sitaram Gayatri

Dissertations & Theses (Open Access)

A limited pool of proteins attains vast functional repertoire due to posttranslational modifications (PTMs). Arginine methylation is a common posttranslational modification, which is catalyzed by a family of nine protein arginine methyltransferases or PRMTs. These enzymes deposit one or two methyl groups to the nitrogen atoms of arginine side-chains. Elucidating the substrate specificity of each PRMT will promote a better understanding of which signaling networks these enzymes contribute to. Although many PRMT substrates have been identified, and their methylation sites mapped, the optimal target motif for each of the nine PRMTs has not been systematically addressed. Here we describe the …


Effects Of Nicotine On The Cyp6a8 Gene Promoter Of Drosophila Melanogaster, Leslie M. Stroud May 2017

Effects Of Nicotine On The Cyp6a8 Gene Promoter Of Drosophila Melanogaster, Leslie M. Stroud

Chancellor’s Honors Program Projects

No abstract provided.


A Tale Of Two Regulators : Characterization Of The Novel Transcription Factor Abmr And The Small Non-Coding Rna Mcr11 In Mycobacterium Tuberculosis, Roxanne Candice Girardin Jan 2017

A Tale Of Two Regulators : Characterization Of The Novel Transcription Factor Abmr And The Small Non-Coding Rna Mcr11 In Mycobacterium Tuberculosis, Roxanne Candice Girardin

Legacy Theses & Dissertations (2009 - 2024)

Genes of unknown function make up nearly one third of Mtb’s genome (Cole,


Influence Of The Pre-Initiation Complex On Mediator Recruitment In Saccharomyces Cerevisiae, Elisabeth Rose Knoll Jan 2017

Influence Of The Pre-Initiation Complex On Mediator Recruitment In Saccharomyces Cerevisiae, Elisabeth Rose Knoll

Legacy Theses & Dissertations (2009 - 2024)

The Mediator complex plays a central, highly conserved role in eukaryotic transcription by RNA Polymerase II (Pol II) by stimulating the cooperative assembly of a pre-initiation complex (PIC) and recruitment of Pol II for gene activation. Mediator recruitment has generally been ascribed to sequence-specific activators engaging subunits from the tail module which in turn function to recruit the middle and head for complete assembly at the UAS. Mediator subunits of the middle and head then bridge the enhancer to connect with the PIC at the core promoter. It is reported that Mediator recruitment at the UAS preferentially occurs at SAGA-dependent, …


The Role Of The Mediator Transcriptional Co-Activator Complex And Promoter Dependence In Ty1 Retrotransposition In Saccharomyces Cerevisiae, Alicia Salinero Jan 2017

The Role Of The Mediator Transcriptional Co-Activator Complex And Promoter Dependence In Ty1 Retrotransposition In Saccharomyces Cerevisiae, Alicia Salinero

Legacy Theses & Dissertations (2009 - 2024)

Retrotransposons are mobile genetic elements that replicate via an RNA intermediary and constitute a significant portion of most eukaryotic genomes. Saccharomyces cerevisiae has been invaluable to retrotransposon research due to the presence of an active retroelement known as Ty1. The mobility of Ty1 is regulated both positively and negatively by numerous host factors, including several subunits of the Mediator transcriptional co-activator complex. The Mediator core complex is organized into genetically and structurally defined head, middle, and tail modules, along with a transiently associated kinase module. We show that with the exception of the kinase module, deletion of non-essential subunits from …


Significance Of Pten Phosphorylation And Its Nuclear Function In Lung Cancer, Prerna Malaney Nov 2016

Significance Of Pten Phosphorylation And Its Nuclear Function In Lung Cancer, Prerna Malaney

USF Tampa Graduate Theses and Dissertations

Phosphorylation mediated inactivation of PTEN leads to multiple malignancies with increased severity. However, the consequence of such inactivation on downstream functions of PTEN are poorly understood. Therefore, the objective of my thesis is to ascertain the molecular mechanisms by which PTEN phosphorylation drives lung cancer. PTEN phosphorylation at the C-terminal serine/threonine cluster abrogates its tumor suppressor function. Despite the critical role of the PTEN C-tail in regulating its function, the crystal structure of the C-tail remains unknown. Using bioinformatics and structural analysis, I determined that the PTEN C-tail is an intrinsically disordered region and is a hot spot for post-translational …


Hepatic Nutrient And Hormonal Regulation Of The Pancreatic-Derived Factor (Pander) Promoter, Whitney Ratliff Nov 2015

Hepatic Nutrient And Hormonal Regulation Of The Pancreatic-Derived Factor (Pander) Promoter, Whitney Ratliff

USF Tampa Graduate Theses and Dissertations

PANcreatic-DERived factor (PANDER, FAM3B) has been shown to regulate glycemic levels via interactions with both pancreatic islets and the liver. Although PANDER is predominantly expressed from the endocrine pancreas, recent work has provided sufficient evidence that the liver may also be an additional tissue source of PANDER production. At physiological levels, PANDER is capable of disrupting insulin signaling and promoting increased hepatic glucose production. As shown in some animal models, strong expression of PANDER, induced by viral delivery within the liver, induces hepatic steatosis. However, no studies to date have explicitly characterized the transcriptional regulation of PANDER from the liver. …


Functional Analysis Of The Ovarian Cancer Susceptibility Locus At 9p22.2 Reveals A Transcription Regulatory Network Mediated By Bnc2 In Ovarian Cells, Melissa Buckley Jan 2015

Functional Analysis Of The Ovarian Cancer Susceptibility Locus At 9p22.2 Reveals A Transcription Regulatory Network Mediated By Bnc2 In Ovarian Cells, Melissa Buckley

USF Tampa Graduate Theses and Dissertations

GWAS have identified several chromosomal loci associated with ovarian cancer risk. However, the mechanism underlying these associations remains elusive. We identify candidate functional Single Nucleotide Polymorphisms (SNPs) at the 9p22.2 ovarian cancer susceptibility locus, several of which map to transcriptional regulatory elements active in ovarian cells identified by FAIRE-seq (Formaldehyde assisted isolation of regulatory elements followed by sequencing) and ChIP-seq (Chromatin Immunoprecipitation followed by sequencing) in relevant cell types. Reporter and electrophoretic mobility shift assays (EMSA) determined the extent to which candidate SNPs had allele specific effects. Chromosome conformation capture (3C) reveals a physical association between Basonuclin 2 (BNC2) and …


Genome-Scale Analyses Of Transcription And Transcriptional Regulation In Bacteria, Devon Marie Fitzgerald Jan 2015

Genome-Scale Analyses Of Transcription And Transcriptional Regulation In Bacteria, Devon Marie Fitzgerald

Legacy Theses & Dissertations (2009 - 2024)

The textbook model of bacterial transcription regulation posits that promoters occur immediately upstream of genes and that transcription factors (TFs) modulate transcription through promoter-proximal binding. However, the recent application of unbiased genome-wide approaches, such as ChIP-seq and RNA-seq, has revealed a much more complex picture, including TF binding and transcription initiation occurring in unexpected locations. This dissertation describes the use of deep sequencing-based approaches to evaluate the genome-wide binding of transcription-related proteins and identify locations of transcription initiation. I have assessed the genome-wide binding of three Escherichia coli TFs and an alternative σ factor. Additionally, I have analyzed genome-wide patterns …


Regulation Of Saga By The N-Terminus Of Spt7 In Saccharomyces Cerevisiae, Dominik Dobransky Aug 2014

Regulation Of Saga By The N-Terminus Of Spt7 In Saccharomyces Cerevisiae, Dominik Dobransky

Electronic Thesis and Dissertation Repository

Spt7 is a 1,332 residue protein critical for maintaining structural integrity of the SAGA complex. I demonstrated that the extreme N-terminus of Spt7 plays an important role in SAGA function. Deletion of the first 73 (Spt773-1332) and 121 (Spt7121-1332) N- terminal residues resulted in slow growth, decreased transcriptional activation at PHO5 and INO1, and a partial decrease in acetylation at lysine 18 of histone H3 at PHO5. The Spt7121-1332 mutant did not affect Spt7’s association with Gcn5 or Tra1, or its localization within the cell. Mutation of the first four positively charged residues …


Chromatin Insulators: Master Regulators Of The Eukaryotic Genome, Todd Andrew Schoborg Aug 2013

Chromatin Insulators: Master Regulators Of The Eukaryotic Genome, Todd Andrew Schoborg

Doctoral Dissertations

Proper organization of the chromatin fiber within the three dimensional space of the eukaryotic nucleus relies on a number of DNA elements and their interacting proteins whose structural and functional consequences exert significant influence on genome behavior. Chromatin insulators are one such example, where it is thought that these elements assist in the formation of higher order chromatin loop structures by mediating long-range contacts between distant sites scattered throughout the genome. Such looping serves a dual role, helping to satisfy both the physical constraints needed to package the linear DNA polymer within the small volume of the nucleus while simultaneously …


Human Adenovirus E1a Binds And Retasks Cellular Hbre1, Blocking Interferon Signalling And Activating Virus Early Gene Transcription, Gregory J. Fonseca Jun 2013

Human Adenovirus E1a Binds And Retasks Cellular Hbre1, Blocking Interferon Signalling And Activating Virus Early Gene Transcription, Gregory J. Fonseca

Electronic Thesis and Dissertation Repository

Upon infection, human adenovirus (HAdV) must block interferon signaling and activate the expression of its early genes to reprogram the cellular environment to support virus replication. During the initial phase of infection, these processes are orchestrated by the first HAdV gene expressed during infection, early region 1A (E1A). E1A binds and appropriates components of the cellular transcriptional machinery to modulate cellular gene transcription and activate viral early genes transcription. We have identified hBre1/RNF20 as a novel target of E1A. hBre1 is an E3 ubiquitin ligase which acts with the Ube2b E2 conjugase and accessory factors RNF40 and WAC1 to monoubiquitinate …


Molecular Functions Of Mll Phd3 Binding To Its Ligands Cyp33 And H3k4me3, Gayathree Raman Jan 2013

Molecular Functions Of Mll Phd3 Binding To Its Ligands Cyp33 And H3k4me3, Gayathree Raman

Dissertations

Mixed Lineage Leukemia protein (MLL) is required for proper embryonic development, and hematopoiesis. It is a SET domain containing histone methyl transferase that trimethylates histone H3 on lysine 4 (H3K4Me3), a histone modification that correlates with active transcription. The 3rd PHD finger of MLL binds to H3K4me3. Thus MLL is a "writer" with an embedded "reader" for H3K4Me3. Cyp33 is another known ligand of MLL PHD3. Over expression of Cyp33 results in transcriptional repression of MLL target genes.

The aim of this study is to determine the biological function of MLL PHD3 binding to H3K4Me3 or Cyp33. Cyp33 binding to …