Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Theses/Dissertations

FEA

Institution
Publication Year
Publication

Articles 31 - 60 of 72

Full-Text Articles in Entire DC Network

Predicting Mechanical Behavior Of 3d Printed Structures Using Mechanics Of Composites And Fracture, Megha Tangri May 2018

Predicting Mechanical Behavior Of 3d Printed Structures Using Mechanics Of Composites And Fracture, Megha Tangri

Mechanical and Aerospace Engineering Theses

Recently, additive manufacturing, or 3D printing as it is more commonly called, has taken a big leap in the manufacturing industry. This technology is rapidly moving from prototyping to manufacturing using metals, polymers, concrete and even composites. Unlike subtractive methods of manufacturing, additive manufacturing can be used to manufacture parts with highly directional mechanical properties. This research focuses on predicting tensile failure of 3D printed polymer structures in different raster orientations using composites lamination theory. Previously it was found experimentally that tensile strengths of 3D printed specimens decrease when raster orientations changes from 0° to 90°. The proposed model developed …


Comparison Of Cross-Sectional Profiles For Side Impact Crash Structure In Passenger Vehicle, Nitish Sharma May 2018

Comparison Of Cross-Sectional Profiles For Side Impact Crash Structure In Passenger Vehicle, Nitish Sharma

Mechanical and Aerospace Engineering Theses

Car’s safety is most important structural criteria while designing an automotive chassis. To protect the occupants from a direct impact, the passenger cabin and the structure of the vehicle should have an appropriate stiffness so that the it absorbs any kind of impact and keeps the passenger safe. Design standards are set by various vehicle safety association around the world based on different crash situations i.e. front crash, side impact, roll over etc. Among these standards, side impact crash account for over all 40% crashes all around the world and is one of the most fatal crash scenarios. This research …


The Effect Of Heat Generation In The Railroad Bearing Thermoplastic Elastomer Suspension Element On The Thermal Behavior Of Railroad Bearing Assembly, Oscar Osvaldo Rodriguez May 2018

The Effect Of Heat Generation In The Railroad Bearing Thermoplastic Elastomer Suspension Element On The Thermal Behavior Of Railroad Bearing Assembly, Oscar Osvaldo Rodriguez

Theses and Dissertations

Understanding the internal heat generation of the railroad bearing elastomer suspension element during operation is essential to predict its dynamic response and structural integrity, as well as to predict the thermal behavior of the complete railroad bearing assembly including the bearing adapter. The latter is essential for sensor selection and placement within the adapter (e.g., typical temperature sensors have operating ranges of up to 125°C or 257°F). The internal heat generation is a function of the loss modulus, strain, and frequency. Based on experimental studies, estimations of internally generated heat within the thermoplastic elastomer pad were obtained. The calculations show …


Rotordynamic Analysis Of Theoretical Models And Experimental Systems, Cameron R. Naugle Apr 2018

Rotordynamic Analysis Of Theoretical Models And Experimental Systems, Cameron R. Naugle

Master's Theses

This thesis is intended to provide fundamental information for the construction and

analysis of rotordynamic theoretical models, and their comparison the experimental

systems. Finite Element Method (FEM) is used to construct models using Timoshenko

beam elements with viscous and hysteretic internal damping. Eigenvalues

and eigenvectors of state space equations are used to perform stability analysis, produce

critical speed maps, and visualize mode shapes. Frequency domain analysis

of theoretical models is used to provide Bode diagrams and in experimental data

full spectrum cascade plots. Experimental and theoretical model analyses are used

to optimize the control algorithm for an Active Magnetic Bearing …


Manufacture Of Complex Geometry Component For Advanced Material Stiffness, David Russell Bydalek Mar 2018

Manufacture Of Complex Geometry Component For Advanced Material Stiffness, David Russell Bydalek

Master's Theses

The manufacture, laminate design, and modeling of a part with complex geometry are explored. The ultimate goal of the research is to produce a model that accurately predicts part stiffness. This is validated with experimental results of composite parts, which refine material properties for use in a final prototype part model. The secondary goal of this project is to explore manufacturing methods for improved manufacturability of the complex part. The manufacturing portion of the thesis and feedback into material model has incorporated a senior project team to perform research on manufacturing and create composite part to be used for experimental …


Design Optimization And High Cycle Fatigue Analysis And Of A Differential Case, Praveen Bulusu Surya Naga Jan 2018

Design Optimization And High Cycle Fatigue Analysis And Of A Differential Case, Praveen Bulusu Surya Naga

Dissertations, Master's Theses and Master's Reports

Lightweight Innovations for Tomorrow (LIFT) is a consortium with several industries, universities and research institutes. It is operated by the American Lightweight Materials Manufacturing Innovation Institute (ALMMII). One of their projects, melt 5a, is to develop high silicon ductile iron (DI) alloys with improved mechanical properties and thin walled DI castings. These alloys have high strength to weight ratio compared to that of standard ductile iron (7003). Using these alloys, components can be re-designed that are much lighter which results in improved fuel efficiency, and reduced manufacturing costs and emissions. I

In this project, a differential case is being re-designed …


High Temperature Polymer Composites Using Out-Of-Autoclave Processing, Sudharshan Anandan Jan 2018

High Temperature Polymer Composites Using Out-Of-Autoclave Processing, Sudharshan Anandan

Doctoral Dissertations

"High performance polymer composites possess high strength-to-weight ratio, corrosion resistance, and have design flexibility. Carbon/epoxy composites are commonly used aerospace materials. Bismaleimide based composites are used as a replacement for epoxy systems at higher service temperatures. Aerospace composites are usually manufactured, under high pressure, in an autoclave which requires high capital investments and operating costs. In contrast, out-of-autoclave manufacturing, specifically vacuum-bag-only prepreg process, is capable of producing low cost and high performance composites. In the current study, out-of-autoclave processing of high temperature carbon/bismaleimide composites was evaluated. The cure and process parameters were optimized. The properties of out-of-autoclave cured laminates compared …


Thermal-Fatigue And Thermo-Mechanical Equivalence For Transverse Cracking Evolution In Laminated Composites, Javier Cabrera Barbero Jan 2018

Thermal-Fatigue And Thermo-Mechanical Equivalence For Transverse Cracking Evolution In Laminated Composites, Javier Cabrera Barbero

Graduate Theses, Dissertations, and Problem Reports

Carbon fiber reinforced plastics (CFRP) are potential materials for many aerospace and aeronautical applications due to their high specif strength/weight and a low coeffcient of thermal expansion (CTE) resulting in a high long-term stability. Among candidate structures, the re-entry reusable launch vehicles (RLV), the fuel oxidant storage and transportation at cryogenic temperature, space satellites, and aircraft structure (frame, wings, etc...) can be highlighted. However, CFRP are prone to internal damage as a result of high residual stresses and thermal fatigue loading. In this study, micro-cracking damage evolution in laminated composites subjected to monotonic cooling and thermal cyclic loads is developed …


Effect Of Underfill Material & Gap Height On Reliability Of Low-K Large-Die Flip Chip Package Under Thermal Loading, Paul Crisanth Dec 2017

Effect Of Underfill Material & Gap Height On Reliability Of Low-K Large-Die Flip Chip Package Under Thermal Loading, Paul Crisanth

Mechanical and Aerospace Engineering Theses

The reliability assessment of package assembly is important to predict the performance of any microelectronic devices. Formation of fatigue cracks at the interface between the solder joint and component is the common failure occurring in widely used microelectronic devices. Lead-free solders and advanced silicon process nodes with the low-k dielectrics flip chip package are used and are facing significant reliability challenges. The mismatch of coefficient of thermal expansion (CTE) between the chip and substrate affect solder joint reliability. The underfill encapsulant packaging is widely used to improve chip device reliability. In this paper, we are studying the effect of different …


A Design Methodology For Continuous Fiber Additive Manufacturing Using Advanced Computer Aided Engineering Techniques, Nicholas Venter Dec 2017

A Design Methodology For Continuous Fiber Additive Manufacturing Using Advanced Computer Aided Engineering Techniques, Nicholas Venter

Mechanical and Aerospace Engineering Theses

A design methodology for Continuous Carbon Fiber Additive Manufacturing (CCFAM) developed using Computer Aided Engineering (CAE) techniques takes advantage of both the mechanical strength of composite materials and the Fused Filament Fabrication (FFF) method. By performing topology optimization and Finite Element Analysis (FEA) on a load-bearing part, engineers can design much lighter optimized parts that are just as strong as those produced using FFF. This weight reduction is achieved by relying on the mechanical strength of continuous carbon fibers printed alongside a traditional thermoplastic matrix. The FFF additive manufacturing method enables the production of complex shapes, which can match the …


Evaluation Of Concrete Constitutive Models For Impact Simulations, Guillermo A. Mata Jun 2017

Evaluation Of Concrete Constitutive Models For Impact Simulations, Guillermo A. Mata

Mechanical Engineering ETDs

The research documented in this thesis deals with computational analysis of reinforced concrete impacted by both hollow and solid missiles as a continuing effort on the work conducted by the Committee on the Safety of Nuclear Installations (CSNI) and Nuclear Energy Agency (NEA). The analysis focuses on comparing two similar material models and their ability to capture the mechanistic response of a reinforced concrete slab subjected to impact loads. The analysis was performed using the Sandia National Laboratories computing software SIERRA Solid Mechanics to run the finite element model. The two constitutive models studied were the Holmquist-Johnson-Cook and Johnson-Holmquist 2 …


Comparison Of Mechanical Behaviour Of Metallic And Composite Front Door Of A Standard Automobile Car By Fea, Aniket Chandu Thosar May 2017

Comparison Of Mechanical Behaviour Of Metallic And Composite Front Door Of A Standard Automobile Car By Fea, Aniket Chandu Thosar

Mechanical and Aerospace Engineering Theses

With the advent of technology, materials have advanced many folds; one such technical revelation has been Fiber-reinforced Composite Materials. Composite materials have two major advantages, among many others: improved strength and stiffness, especially compared to other materials on a unit weight basis and low density with ease of manufacturing. These advantages have led to new aeronautical, automobile and marine designs that are radical departures from past efforts based on conventional materials. This paper focusses on a comparative study between Aluminum Alloys, Manganese alloys, structural steel, Composite materials and investigates the static and dynamic behaviors for a composite front door of …


Fea Analysis And Optimization Of Differential Housing For Fatigue Stresses And Fatigue Test Design To Study Skin Effect In Ductile Iron, Swapnil A. Pandey Jan 2017

Fea Analysis And Optimization Of Differential Housing For Fatigue Stresses And Fatigue Test Design To Study Skin Effect In Ductile Iron, Swapnil A. Pandey

Dissertations, Master's Theses and Master's Reports

Automotive emission standards are getting more stringent day by day and governments worldwide are moving to reduce emissions from automobiles. In this scenario reducing the weight of automobile components becomes an important design objective to reduce emissions. A 10% reduction of weight in the complete automobile leads to 6-8 percent improvement in mileage (Mhapankar 2015). Also, powertrain components make up for approximately 27% of the total automobile weight and thus optimizing the design of components in the powertrain is an important task (Mhapankar 2015). Statistics show that 26% of component failures in automobiles are part of powertrain and 21% of …


Minimizing Run Time Of Finite Element Analyses: Applications In Conformable Cng Tank Modeling, Paul M. Roehm Jan 2017

Minimizing Run Time Of Finite Element Analyses: Applications In Conformable Cng Tank Modeling, Paul M. Roehm

Dissertations, Master's Theses and Master's Reports

REL Inc. has proposed a CNG tank that deviates from typical cylindrical storage methods. The goal of REL working with Michigan Tech is to minimize mass and meet NGV2 safety standards for pressure and drop testing for this tank.

The model has undulated outer surfaces and Schwarz P-surface internal geometry. To accurately mesh this, a small element size is necessary; this creates a model with millions of elements. In explicit analyses, this requires a large amount of computational resources to run.

This report focuses on methods to reduce model run time without reducing accuracy. Methods covered include creating symmetric building …


Bio Inspired Lightweight Composite Material Design For 3d Printing, Kaushik Thiyagarajan Jan 2017

Bio Inspired Lightweight Composite Material Design For 3d Printing, Kaushik Thiyagarajan

Electronic Theses and Dissertations

Lightweight material design is an indispensable subject in product design. The lightweight material design has high strength to weight ratio which becomes a huge attraction and an area of exploration for the researchers as its application is wide and increasing even in every day-to-day product. Lightweight composite material design is achieved by selection of the cellular structure and its optimization. Cellular structure is used as it has wide multifunctional properties in addition to the lightweight characteristics. Applications of light weight cellular structures are wide and is witnessed in all industries from aerospace to automotive, construction to product design. In this …


Design And Analysis Of The Impact Diffusion Helmet Through A Finite Element Analysis Approach, Steven Paul Warnert Oct 2016

Design And Analysis Of The Impact Diffusion Helmet Through A Finite Element Analysis Approach, Steven Paul Warnert

Master's Theses

By applying the finite element approach to the design and analysis of the impact diffusion helmet, many helmet configurations were able to be analyzed. Initially it was important to determine what design variables had an influence on the impact reducing abilities of the helmet design. The helmet was run through a series of Abaqus simulations that determined that a design with two oval shaped channels running along the length of the helmet was best. Next, these options were optimized to generate the helmet that produced the greatest impact reduction. The optimization simulations determined that a helmet that pushed the channels …


Continuum Modeling Of The Densification Of W-Ni-Fe During Selective Laser Sintering, Connor M. West Jun 2016

Continuum Modeling Of The Densification Of W-Ni-Fe During Selective Laser Sintering, Connor M. West

Master's Theses

The purpose of this thesis is to effectively model the time history of the temperature distribution during the selective laser sintering process and use this information to investigate the resulting relative density. The temperature is a critical parameter of the process because it directly effects the overall quality of the part. First, an efficient, affordable, and reliable simulation was developed within the finite element software, Abaqus. Next, the results from the simulations were compared to the experimental results performed by Wang et al. (2016). The FEA model consisted of a 3 layer simulation. Multiple simulations at various laser recipes were …


Damage Tolerance And Assessment Of Unidirectional Carbon Fiber Composites, Mark David Flores Jan 2016

Damage Tolerance And Assessment Of Unidirectional Carbon Fiber Composites, Mark David Flores

Open Access Theses & Dissertations

Composites are beginning to be used in a variety of different applications throughout industry. However, certification and damage tolerance is a growing concern in many aerospace and marine applications. Although compression-after-impact have been studied thoroughly, determining a damage tolerance methodology that accurately characterizes the failure of composites has not been established. An experimental investigation was performed to study the effect of stacking sequence, low-velocity impact response, and residual strength due to compression and fatigue. Digital Image Correlation (DIC) captured the strains and deformation of the plate due to compression. Computational investigations integrated non-destructive techniques (C-Scan, X-Ray) to determine the extent …


Optimization Of Formula Sae Electric Vehicle Frame With Finite Element Analysis, Alexander Prorok Jan 2016

Optimization Of Formula Sae Electric Vehicle Frame With Finite Element Analysis, Alexander Prorok

Williams Honors College, Honors Research Projects

Optimization of Formula SAE Electric Vehicle Frame with Finite Element Analysis


Simulation Of Magnetic Field Induced Current And Neuron Spiking For Magnetic Seizure Therapy, Abhijeet R. Wadkar Nov 2015

Simulation Of Magnetic Field Induced Current And Neuron Spiking For Magnetic Seizure Therapy, Abhijeet R. Wadkar

Electronic Thesis and Dissertation Repository

Magnetic seizure therapy (MST) is currently on trial to treat severe cases of depression. This thesis is concerned with getting a deeper understanding of the mechanics behind MST by employing FEA of brain. The simulations performed via COMSOL helped identify the dimensions and coil types of the MST device as well as the angular probing orientations. Largest induced current due to the externally imposed magnetic field was found in the cerebrospinal fluid which was found to act as a barrier to induce current in the gray matter. In an attempt to relate the induced current to the neuron spiking, a …


Analysis Of A Carbon Fiber Reinforced Polymer Impact Attenuator For A Formula Sae Vehicle Using Finite Element Analysis, John T. Rappolt Jun 2015

Analysis Of A Carbon Fiber Reinforced Polymer Impact Attenuator For A Formula Sae Vehicle Using Finite Element Analysis, John T. Rappolt

Master's Theses

The Hashin failure criteria and damage evolution model for laminated fiber reinforced polymers are explored. A series of tensile coupon finite element analyses are run to characterize the variables in the physical model as well as modeling techniques for using an explicit dynamic solver for a quasi-static problem. An attempt to validate the model on an axial tube crush is presented. It was found that fiber buckling was not occurring at the impactor-tube interface. Results and speculation as to why the failure initiation is incorrect are discussed. Lessons learned from the tube crush are applied successfully to the quasi-static Formula …


Concurrent Engineering Through Parallelization Of The Design-Analysis Process, Eric Joseph Wardell May 2015

Concurrent Engineering Through Parallelization Of The Design-Analysis Process, Eric Joseph Wardell

Theses and Dissertations

The disconnect between the way CAD and analysis applications handle model geometry has long been a hindrance to engineering design. Current industry practices often utilize outdated forms of geometry transfer between these different engineering software applications such as neutral file formats and direct translations. Not only to these current practices slow the engineering design process but they also hinder the integration of design and analysis programs.This thesis proposes a new, multi-user, integrated design-analysis architecture which allows auxiliary functions such as analysis and computer-aided manufacturing to be better connected with the computer-aided design. It is hypothesized that this new architecture will …


Development Of A Finite Element Model For Predicting The Impact Energy Absorbing Performance Of A Composite Structure, Matthew Lowell Roberts Jun 2014

Development Of A Finite Element Model For Predicting The Impact Energy Absorbing Performance Of A Composite Structure, Matthew Lowell Roberts

Master's Theses

Because of their high strength-to-weight ratio, Fiber Reinforced Composite (FRC) materials are well suited for use in high performance racing applications where weight must be kept to a minimum. Formula SAE (FSAE) race cars are designed and built by college students, roughly following the model of a scaled down Formula One car. Strict regulations are placed on specific components of the car in the interest of equalizing competition and ensuring the safety of the drivers. Students are required to construct a survival cell (the chassis), which can resist large amounts of energy in the event of a crash, with an …


The Interfacial Fracture Of Bonded Materials And Composites, Kai Zhao Jan 2014

The Interfacial Fracture Of Bonded Materials And Composites, Kai Zhao

Open Access Theses & Dissertations

Adhesive bonding and composite materials have been widely used in manufacturing industry. Failure results from the weakest link in a structure and this is often the interface between two materials. In case of composites, it becomes the fiber and matrix interface. In case of bonded polymers, the bonding line is the interface. This Dissertation is focused on the interfacial fracture of bonded materials and composites. First, a systematic experimental investigation on adhesive bonding strengths of polymer/polymer and polymer/metal joints was conducted and the experimental results were compared with other researchers' work. Then, a modified short-beam shear approach is developed to …


Relating Microstructure To Process Variables In Beam-Based Additive Manufacturing Of Inconel 718, John Ryan Thompson Jan 2014

Relating Microstructure To Process Variables In Beam-Based Additive Manufacturing Of Inconel 718, John Ryan Thompson

Browse all Theses and Dissertations

The advancement of laser or electron beam-based additive manufacturing requires the ability to control solidification microstructure. Previous work combined analytical point source solutions and nonlinear thermal finite element analysis (FEA) to explore the effects of deposition process variables on Ti-6Al-4V solidification microstructure. The current work seeks to extend the approach to Inconel 718, with the addition of Cellular Automaton-Finite Element (CAFE) models. Numerical data from finite element results are extracted in order to calculate accurate melt pool geometry, thus leading to corresponding cooling rates and thermal gradients. The CAFE models are used to simulate grain grown and nucleation, providing a …


Vibration And Acoustic Properties Of Honeycomb Sandwich Structures Subject To Variable Incident Plane-Wave Angle Pressure Loads, Jiaxue Yan May 2013

Vibration And Acoustic Properties Of Honeycomb Sandwich Structures Subject To Variable Incident Plane-Wave Angle Pressure Loads, Jiaxue Yan

All Theses

Honeycomb structures are widely used in many areas for their material characteristics such as high strength-to-weight ratio, stiffness-to-weight, sound transmission, and other properties. Honeycomb structures are generally constructed from periodically spaced tessellations of unit cells. It can be shown that the effective stiffness and mass properties of honeycomb are controlled by the local geometry and wall thickness of the particular unit cells used. Of particular interest are regular hexagonal (6-sided) honeycomb unit cell geometries which exhibit positive effective Poisson's ratio, and modified 6-sided auxetic honeycomb unit cells with Poisson's ratio which is effectively negative; a property not found in natural …


Development Of A New Temporary Fastener For Aerospace Automation, Xiangwen Zhang Jan 2013

Development Of A New Temporary Fastener For Aerospace Automation, Xiangwen Zhang

Masters Theses

"Temporary fasteners are required in aircraft assembly, especially in the assembly of wings, fuselage, and aircraft skin's substructure prior to drilling holes for permanent fasteners by automated drilling machines. The objective was to develop a temporary fastener that can be installed, clamped, loosened, and removed from one side with a short head length. Published papers, web pages and patents relating to temporary fasteners were reviewed. Then by considering the ability to meet the operation requirements and concerns, a temporary fastener was designed with the following advantages:

  • a simple structure that can be easily fabricated
  • a short head length to save …


Analytical And Numerical Modeling Of Assembly Procedures Of Steel Fulcra Of Bascule Bridges, Sriharsha Garapati Jan 2013

Analytical And Numerical Modeling Of Assembly Procedures Of Steel Fulcra Of Bascule Bridges, Sriharsha Garapati

USF Tampa Graduate Theses and Dissertations

To model shrink-fitting in metal components, an analytical model for two long compound cylinders with temperature dependent material properties and interference between them is developed for calculating transient temperatures and stresses. A finite element model is developed for the same geometry which incorporated the temperature dependent material properties. A convergence study is performed on the finite element and analytical model. The finite element model is validated by comparing the approximations of finite element model with the analytical solution.

In an assembly procedure of fulcrums for bascule bridges, called AP1, the trunnion is shrink-fitted into a hub, followed by shrink fitting …


Computationally Efficient Finite Element Models Of The Lumbar Spine For The Evaluation Of Spine Mechanics And Device Performance, Sean D. Smith Jan 2012

Computationally Efficient Finite Element Models Of The Lumbar Spine For The Evaluation Of Spine Mechanics And Device Performance, Sean D. Smith

Electronic Theses and Dissertations

Finite Element models of the lumbar spine are commonly used for the study of spine mechanics and device performance, but have limited usefulness in some applications such as clinical and design phase assessments due to long analysis times. In this study a computationally efficient L4-L5 FSU model and a L1-Sacrum multi-segment model were developed and validated. The FSU is a functional spine unit consisting of two adjacent vertebral bodies, in this case L4 and L5. The multi-segment model consists of all lumbar vertebrae and the sacrum. The models are able to accurately predict spine kinematics with significantly reduced analysis times, …


Explicit Finite Element Modeling Of The Human Lumbar Spine, Milind Rao Jan 2012

Explicit Finite Element Modeling Of The Human Lumbar Spine, Milind Rao

Electronic Theses and Dissertations

Validated finite element (FE) models of the functional spinal unit (FSU) and lumbar spine are essential in design-phase device development and in assessing the mechanics associated with normal spine function and degenerative disc disease (DDD), as well as the impact of fusion and total disc replacement (TDR). Although experimental data from fully intact specimens can be used for model calibration and validation, the contributions from the individual structures (disc, facets, and ligaments) may be inappropriately distributed. Hence, creation of decompression conditions or device implantations that require structure removal may not have the proper resulting mechanics. An explicit FE formulation may …