Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

PDF

Theses/Dissertations

Combustion

Institution
Publication Year
Publication

Articles 31 - 60 of 101

Full-Text Articles in Entire DC Network

NoX Formation In Light-Hydrocarbon, Premixed Flames, Robert T. Hughes Jan 2018

NoX Formation In Light-Hydrocarbon, Premixed Flames, Robert T. Hughes

Theses and Dissertations--Mechanical Engineering

This study explores the reactions and related species of NOx pollutants in methane flames in order to understand their production and consumption during the combustion process. To do this, several analytical simulations were run to explore the behavior of nitrogen species in the pre-flame, post- flame, and reaction layer regions. The results were then analyzed in order to identify all "steady-state" species in the flame as well as the determine all the unnecessary reactions and species that are not required to meet a defined accuracy. The reductions were then applied and proven to be viable.


A Multi-Scale Approach For Modeling Shock Ignition And Burn Of Granular Hmx, Pratap Thamanna Rao Nov 2017

A Multi-Scale Approach For Modeling Shock Ignition And Burn Of Granular Hmx, Pratap Thamanna Rao

LSU Doctoral Dissertations

Deflagration-to-detonation transition (DDT) in confined, low-density granular HMX (65%-85% Theoretical Maximum Density, TMD) occurs by a complex mechanism that involves compaction shock interactions within the material. Piston driven DDT experiments indicate that detonation is abruptly triggered by the interaction of a strong burn-supported secondary shock and a piston-supported primary (input) shock, where the nature of the interaction depends on initial packing density and primary shock strength. These interactions influence transition by affecting hot-spot formation within the micro-structure during pore collapse. In this study, meso-scale simulations of hot-spot formation in shock loaded granular HMX are used to guide the development of …


Fundamental Studies Of Flame Structure Through Laser Plasma Diagnostics, Wendong Wu Aug 2017

Fundamental Studies Of Flame Structure Through Laser Plasma Diagnostics, Wendong Wu

McKelvey School of Engineering Theses & Dissertations

Increasing concerns about air pollution and global climate change are drawing attention to the need for efficiency improvements and emission reductions for combustion processes, which account for more than 85% of energy production in United States. Combustion efficiency and emissions are affected by the mixing and reacting of fuel and oxidizer. Understanding such behavior plays a critical role in flame structure studies and combustion optimization. However, experimentally obtaining mixture fraction, which is a widely used quantity to describe the mixing behavior, has proven to be a challenge, especially for heavier hydrocarbon fuels or fuel rich flames. Moreover, measuring flame temperature …


Design Of A 1 Megawatt Heat Input Direct Power Extraction System For Advanced Topping Cycles, Brian Matthew Lovich Jan 2017

Design Of A 1 Megawatt Heat Input Direct Power Extraction System For Advanced Topping Cycles, Brian Matthew Lovich

Open Access Theses & Dissertations

Power development has become a standard for living; as such more efficient and cleaner methods are desired. One such method is that of the direct power extraction system utilizing Magnetohydrodynamic properties. This paper will discuss the combustor designed and developed for a direct power extraction system at the 1 MW heat input range. A short history of the power systems utilized with a focus on the direct power class will be conducted in the first chapter to give insight into the benefits of using the direct power system. Then a literature review the fundamentals of direct power systems will be …


Reaction Tuning Of Selectively Deposited Nano-Thermite Inks For Thrust And Heat Deposition, Raghav Ramachandran Dec 2016

Reaction Tuning Of Selectively Deposited Nano-Thermite Inks For Thrust And Heat Deposition, Raghav Ramachandran

Open Access Theses

Currently there is very little systematic work that quantifies the performance of energetic materials in terms of thrust or heat deposition applied to electronic circuits. A better understanding of the interactions between nano-scale energetic materials and electronic systems, as a function of stoichiometry is needed for enhanced defeat. Both of these needs are addressed in this research. Formulations of Al-CuO and Al-Bi2O3 nano-thermites were prepared at different equivalence ratios and selectively deposited onto silicon substrates and thrust and heat deposition of these materials was quantified. Both nano-thermite systems produced maximum thrust near stoichiometric ratios, and more fuel-rich mixtures led to …


Data Driven Low-Bandwidth Intelligent Control Of A Jet Engine Combustor, Nathan L. Toner Aug 2016

Data Driven Low-Bandwidth Intelligent Control Of A Jet Engine Combustor, Nathan L. Toner

Open Access Dissertations

This thesis introduces a low-bandwidth control architecture for navigating the input space of an un-modeled combustor system between desired operating conditions while avoiding regions of instability and blow-out. An experimental procedure is discussed for identifying regions of instability and gathering sufficient data to build a data-driven model of the system's operating modes. Regions of instability and blow-out are identified experimentally and a data-driven operating point classifier is designed. This classifier acts as a map of the operating space of the combustor, indicating regions in which the flame is in a "good" or "bad" operating mode. A data-driven predictor is also …


An Experimental Investigation Of Self-Excited Combustion Dynamics In A Single Element Lean Direct Injection (Ldi) Combustor, Rohan M. Gejji Aug 2016

An Experimental Investigation Of Self-Excited Combustion Dynamics In A Single Element Lean Direct Injection (Ldi) Combustor, Rohan M. Gejji

Open Access Dissertations

The management of combustion dynamics in gas turbine combustors has become more challenging as strict NOx/CO emission standards have led to engine operation in a narrow, lean regime. While premixed or partially premixed combustor configurations such as the Lean Premixed Pre-vaporized (LPP), Rich Quench Lean burn (RQL), and Lean Direct Injection (LDI) have shown a potential for reduced NOx emissions, they promote a coupling between acoustics, hydrodynamics and combustion that can lead to combustion instabilities. These couplings can be quite complex, and their detailed understanding is a pre-requisite to any engine development program and for the development of predictive capability …


The Validation And Verification Of Les Modeling Using Kiva, David Fyda Aug 2016

The Validation And Verification Of Les Modeling Using Kiva, David Fyda

UNLV Theses, Dissertations, Professional Papers, and Capstones

In recent years, the use of large-eddy simulation (LES) has grown into new research methods. LES is preferred when compared to Reynold’s Averaged Navier Stokes (RANS), which separates velocity components into steady and fluctuating components. While RANS is relatively easy to implement, it does not fully resolve the range of turbulence eddies and has limitations that make it inaccurate in many practical circumstances. Direct numerical simulation, DNS, fully resolves all turbulent eddies to the smallest grid scale, but requires an extremely fine grid. This makes it computationally impractical to use as the computational power required to solve even the simplest …


Gasoline Confined In Nano-Porous Media, Matthew Giso Jun 2016

Gasoline Confined In Nano-Porous Media, Matthew Giso

Honors Theses

The heat of combustion was determined for gasoline confined in nano-porous media of differing pore size by bomb calorimetry. The heat of combustion of the confined fuels was comparable to that of bulk within the experimental uncertainty. This suggests that all of the confined fuel burns without any flame quenching and no chemical interactions at the interface between pore walls and fuel mitigate combustion.


Application Of A Multi-Zone Model For The Prediction Of Species Concentrations In Rapid Compression Machine Experiments, David Wilson Apr 2016

Application Of A Multi-Zone Model For The Prediction Of Species Concentrations In Rapid Compression Machine Experiments, David Wilson

Master's Theses (2009 -)

Accurate chemical kinetic models, which predict species evolution and heat release rates in chemically reactive systems, are essential for further advancements in fuel and combustion technology. An experimental facility that is widely used for evaluating the accuracy of kinetic models is a rapid compression machine (RCM), which creates a well-defined reaction environment by compressing a reactive mixture inside a chamber. Generally, RCM experiments are conducted in order to obtain ignition delay data. However, chemical speciation data provides greater insight into reaction pathways, and is therefore a more rigorous benchmark for validating kinetic models. In order for a chemical kinetic model …


Design Of A Thermal Management System For An Oxy-Methane Direct Power Extraction Combustor, Jad Gerges Aboud Jan 2016

Design Of A Thermal Management System For An Oxy-Methane Direct Power Extraction Combustor, Jad Gerges Aboud

Open Access Theses & Dissertations

The overarching goal of this Thesis is to present the design of a thermal management system for an oxy-methane direct power extraction combustor. The design is initiated by performing a 2D analysis on the combustor geometry and then using these results in a 3D model. This is done by using results for heat transfer coefficient and temperatures found from the 2D simulation and importing these to the 3D model. The approach used here couples the combustion process, heat transfer through the chamber wall, and fluid flow behaviors in order to observe the thermal characteristics of the combustor during operation. This …


Combustion Of Novel Thermite Mixtures For Iodine Generation, Sergio Emanuel Guerrero Jan 2016

Combustion Of Novel Thermite Mixtures For Iodine Generation, Sergio Emanuel Guerrero

Open Access Theses & Dissertations

Halogen-containing reactive materials could be used for mitigating the spread of hazardous, active biological microorganisms aerosolized as a result of explosion. The present work exhibits experimental results on the combustion of mechanically alloyed aluminum-iodine (Al-I2) powder mixed with Fe2O3, CuO, MoO3, Bi2O3, and I2O5. Wet mixing was used to prepare the samples, which were then compacted into pellets and ignited with a CO2 laser. A chamber was designed and built to accommodate for combustion and collection of products, and the available laser ignition setup was modified to enable combustion experiments with rapidly burning gas-generating mixtures. High-speed video recording was used …


Economical Retrofit System To Reduce Cooking Emissions In Third World Dwellings, Jonathan Vanzummeren, Tyler Sturgeon, Ben Dalessandro Jan 2016

Economical Retrofit System To Reduce Cooking Emissions In Third World Dwellings, Jonathan Vanzummeren, Tyler Sturgeon, Ben Dalessandro

Williams Honors College, Honors Research Projects

Abstract:

The purpose of this document is to propose and demonstrate the feasibility and effectiveness of substituting an open flame biomass cooking process with a closed system with the capabilities of sustaining an adequate fire. Clay ovens or “chulhas” are the traditional piece of cooking equipment used in poorer areas of the world. They are often built inside cramped one-room housing units with little or no ventilation. The emissions released from burning fuel sources such as wood, coal, or animal waste bring with them detrimental and often fatal health problems and results in approximately 1.3 million deaths per year.

The …


The Study Of Ionization In A Military, Heavy-Duty, Diesel Engine, Steven Zielinski Jan 2015

The Study Of Ionization In A Military, Heavy-Duty, Diesel Engine, Steven Zielinski

Wayne State University Theses

This thesis is an investigation of ionization in a military, heavy-duty, diesel engine. Ionization is a phenomenon which occurs in both spark-ignited and diesel engines. During the reactions of combustion, charged molecules and electrons are produced. The current produced, ion current, from these charges can be measured. The measurement of ion current can serve as an in-cylinder diagnostic for closed-loop engine control strategies. In this work, a literature review was performed to survey previous work as it pertains to ionization in diesel engines. In addition, a detailed description and comparison of the HEUI injection system was made to HPCR. This …


Incorporating Dynamic Flame Behavior Into The Scaling Laws Of Wildland Fire Spread, Brittany A. Adam Jan 2015

Incorporating Dynamic Flame Behavior Into The Scaling Laws Of Wildland Fire Spread, Brittany A. Adam

Theses and Dissertations--Mechanical Engineering

A challenge for fire researchers is obtaining data from those fires that are most dangerous and costly. While it is feasible to instrument test beds, test plots, and small prescribed burns for research, it is uncommon to successfully instrument an active wildland fire. With a focus on very specific facets of wildland fire, researchers have created many unique models utilizing matchsticks, cardboard, liquid fuel, excelsior, plywood, live fuels, dead fuels, and wood cribs of different packing densities. Such scale models, however, only serve as valid substitutes for the full-scale system when all functional relations of the scale model are made …


Computational Fluid Dynamics Modeling Of The Effects Of Water Injection In A Diesel Engine, Rabun Z. Wallace Jan 2015

Computational Fluid Dynamics Modeling Of The Effects Of Water Injection In A Diesel Engine, Rabun Z. Wallace

Electronic Theses and Dissertations

Water injection has been used in internal combustion engines for many years. It has been used to cool combustion temperatures, reduce emissions, and in some instances clean carbon buildup from the cylinder. Research has shown that the water to fuel mass ratio is most effective between 20-30%, so the upper and lower limit were used for simulations in Converge CFD. To validate the CFD model, a case without water injection was compared to experimental data from Sandia National Laboratory. The predicted in-cylinder pressure and heat release rate showed good agreement with the experimental data. Cases were run with the injection …


Thermodynamic And Chemical Kinetic Coupled Modeling For The Determination Of Cyclic Combustion Phasing In Hcci Engines, Krishawn Michele Goodwin Jan 2015

Thermodynamic And Chemical Kinetic Coupled Modeling For The Determination Of Cyclic Combustion Phasing In Hcci Engines, Krishawn Michele Goodwin

Masters Theses

"Homogeneous charge compression ignition (HCCI) is a low temperature combustion mode that contains great potential for decreasing emissions while increasing efficiency in internal combustion engines. The limitation is in that it is inherently difficult to control based on the lack of an external combustion trigger. This thesis outlines the potential of using the combustion residual species of carbon monoxide as a method of controlling the location of combustion by using data from a computer model. The model is a nonlinear five-state thermodynamic model that is coupled with a skeletal chemical kinetic model for PRF96. The model computes the amount of …


Combustion Kinetics Of Advanced Biofuels, Ghazal Barari Jan 2015

Combustion Kinetics Of Advanced Biofuels, Ghazal Barari

Electronic Theses and Dissertations

Use of biofuels, especially in automotive applications, is a growing trend due to their potential to lower greenhouse gas emissions from combustion. Ketones are a class of biofuel candidates which are produced from cellulose. However, ketones received rather scarce attention from the combustion community compared to other classes such as, alcohols, esters, and ethers. There is little knowledge on their combustion performance and pollutant generation. Hence their combustion chemistry needs to be investigated in detail. Diisopropyl ketone (DIPK) is a promising biofuel candidate, which is produced using endophytic fungal conversion. A detailed understanding of the combustion kinetics of the oxidation …


Laboratory Apparatus For Gas Turbine Combustion Development, Dustin Lee Cruise Jul 2014

Laboratory Apparatus For Gas Turbine Combustion Development, Dustin Lee Cruise

Open Access Theses

The next generation of combustor technology will be required to meet the demands of a world more focused on greenhouse gases and global warming. Due to this new focus on emission control, combustors must produce less NO x , while operating in a higher pressure environment that is more prone to combustion instabilities.

This work focuses on the development of a lab and combustor that will be used for the next generation combustor development. The lab development includes layout and organization, facilities, measurement and instrumentation, automation of the testing process, and an imaging tool for diagnostics.

A Lean Direction Injection …


Quantitative Imaging Of Radiation Intensity From A Turbulent Sooting Flame, Robert Kapaku Apr 2014

Quantitative Imaging Of Radiation Intensity From A Turbulent Sooting Flame, Robert Kapaku

Open Access Theses

Quantitative imaging of radiation intensity (QIRI) is a method of investigating temporally and spatially resolved radiation from species and particulates in turbulent flames. The current study reports quantitative images of radiation intensity from a turbulent ethylene flame that matches the Reynolds number (15,200) of a non-sooting flame from the International Workshop on Measurement and Computation of Turbulent Non-premixed Flames. A calibrated high-speed infrared camera with four band-pass filters was used to acquire images of radiation intensity in wavelengths corresponding to carbon dioxide, water vapor, and soot. The luminous flame measurements show thin radiating structures corresponding to soot layers and higher …


Design And Development Of Heterogenous Combustion Systems For Lean Burn Applications, Anthony Terracciano Jan 2014

Design And Development Of Heterogenous Combustion Systems For Lean Burn Applications, Anthony Terracciano

Electronic Theses and Dissertations

Combustion with a high surface area continuous solid immersed within the flame, referred to as combustion in porous media, is an innovative approach to combustion as the solid within the flame acts as an internal regenerator distributing heat from the combustion byproducts to the upstream reactants. By including the solid structure, radiative energy extraction becomes viable, while the solid enables a vast extension of flammability limits compared to conventional flames, while offering dramatically reduced emissions of NOx and CO, and dramatically increased burning velocities. Efforts documented within are used for the development of a streamlined set of design principles, and …


Perovskite Catalysts Enhanced Combustion On Porous Media And Thermoelectric Power Conversion, Manuel Robayo Jan 2014

Perovskite Catalysts Enhanced Combustion On Porous Media And Thermoelectric Power Conversion, Manuel Robayo

Electronic Theses and Dissertations

A combustion chamber incorporating a high temperature porous matrix was design and tested. The effects and merits of combining combustion on porous media and catalytic enhancement were explored, in addition to the proof of concept of integrating these technologies with simple heat engines, such as thermoelectric generators, to generate efficient and reliable power. The direct observation of the flame during the combustion becomes possible due to a specially designed stainless steel chamber incorporating a quartz window where the initiation and propagation of the combustion reaction/flame was directly visible. The simple design of the combustion chamber allowed for a series of …


An Investigation Of Variable Valve Timing Effects On Hcci Engine Performance, Hrishikesh Abhay Saigaonkar Jan 2014

An Investigation Of Variable Valve Timing Effects On Hcci Engine Performance, Hrishikesh Abhay Saigaonkar

Dissertations, Master's Theses and Master's Reports - Open

The Homogeneous Charge Compression Ignition (HCCI) engine is a promising combustion concept for reducing NOx and particulate matter (PM) emissions and providing a high thermal efficiency in internal combustion engines. This concept though has limitations in the areas of combustion control and achieving stable combustion at high loads. For HCCI to be a viable option for on-road vehicles, further understanding of its combustion phenomenon and its control are essential. Thus, this thesis has a focus on both the experimental setup of an HCCI engine at Michigan Technological University (MTU) and also developing a physical numerical simulation model called the …


Effect Of Cetane Number And Volatility On Autoignition And Combustion Of Alternative Fuels And Their Surrogates, Ziliang Zheng Jan 2014

Effect Of Cetane Number And Volatility On Autoignition And Combustion Of Alternative Fuels And Their Surrogates, Ziliang Zheng

Wayne State University Dissertations

Diesel engine has become a popular choice for trucks, trains, boats, and most other heavy-duty applications. The inherent benefits of diesel engine are high thermal efficiency and specific power output, but there is a concern about high levels of engine-out NOx and particulate matter emissions, which is a major contributor in environment pollution. Moreover, concern about the crisis of crude oil reserves, increasing gas price, trade deficit, and homeland security enhances the interests in alternative fuels.

Unlike conventional diesel fuel, alternative fuels have wide range of properties, such as volatility, cetane number, density, viscosity and lower heating value, which influence …


Simulations And Measurements Of Fuel Film Using Refractive Index Matching Method, Fengkun Wang Jan 2014

Simulations And Measurements Of Fuel Film Using Refractive Index Matching Method, Fengkun Wang

Wayne State University Theses

ABSTRACT

SIMULATIONS AND MEASUREMENTS OF FUEL FILM USING REFRACTIVE INDEX MATCHING METHOD

by

FENGKUN WANG

APRIL 2014

Advisor: Dr. Ming-Chia Lai

Major: Mechanical Engineering

Degree: Master of Science

Direct Injection (DI) has been known for its improved performance and efficiency in gasoline spark-ignition engines. However, wall wetting is inevitable and the source of UHC and PM. In order to take advantage of the GDI technology, it is important to investigate spray wall interactions in detail.

Numerical and experimental studies are carried out for spray and wall impingements in an optical constant volume vessel. The fuel film was measured spatially and …


Computational Fluid Dynamics Simulation Of United Launch Alliance Delta Iv Hydrogen Plume Mitigation Strategies, Stephen Guimond Jan 2014

Computational Fluid Dynamics Simulation Of United Launch Alliance Delta Iv Hydrogen Plume Mitigation Strategies, Stephen Guimond

Electronic Theses and Dissertations

During the launch sequence of the United Launch Alliance Delta IV launch vehicle, large amounts of pure hydrogen are introduced into the launch table and ignited by Radial-Outward-Firing-Igniters (ROFIs). This ignition results in a significant flame, or plume, that rises upwards out of the launch table due to buoyancy. The presence of the plume causes increased and unwanted heat loads on the surface of the vehicle. A proposed solution is to add a series of fans and structures to the existing launch table configuration that are designed to inject ambient air in the immediate vicinity of the launch vehicle's nozzles …


Tomographic Imaging Of Combustion Zones Using Tunable Diode Laser Absorption Spectroscopy (Tdlas), Avishek Guha Jan 2014

Tomographic Imaging Of Combustion Zones Using Tunable Diode Laser Absorption Spectroscopy (Tdlas), Avishek Guha

LSU Doctoral Dissertations

This work concentrates on enabling the usage of a specific variant of tunable diode laser absorption spectroscopy (abbr. TDLAS) for tomogaphically reconstructing spatially varying temperature and concentrations of gases with as few reconstruction artifacts as possible. The specific variant of TDLAS used here is known as wavelength modulation with second harmonic detection (abbr. WMS-2f) which uses the wavelength dependent absorbance information of two different spectroscopic transitions to determine temperature and concentration values. Traditionally, WMS-2f has generally been applied to domains where temperature although unknown, was spatially largely invariant while concentration was constant and known to a reasonable approximation (_x0006_+/- 10% …


Effect Of Intake Temperature And Boost Pressure On The Auto-Ignition Of Fuels With Different Cetane Numbers And Volatilities, Chandrasekharan Jayakumar Jan 2013

Effect Of Intake Temperature And Boost Pressure On The Auto-Ignition Of Fuels With Different Cetane Numbers And Volatilities, Chandrasekharan Jayakumar

Wayne State University Dissertations

The aim of this research is to investigate the effect of air inlet temperature and boost pressure on the auto-ignition of fuels that have different CNs and volatilities in a single cylinder diesel engine. The inlet air temperature is varied over a range of 30°C to 110°C at a constant intake pressure of 1.1 bar. The boost pressure is varied from 1.1 bar to 1.5 bar at a constant intake temperature of 60°C. All engine tests are run at steady-state conditions. The fuels used are ultra-low-sulfur-diesel (ULSD), JP-8 (two blends with CN 50 & 31) and F-T SPK. Detailed analysis …


Ionization In Diesel Combustion For On-Board Diagnostics And Engine Control, Tamer Hassan Badawy Jan 2013

Ionization In Diesel Combustion For On-Board Diagnostics And Engine Control, Tamer Hassan Badawy

Wayne State University Dissertations

Diesel engines have been known for their high thermal efficiency and specific power output, but there is concern about engine-out NOx and particulate matter emissions. To meet the current emission standards, advanced diesel engines are fitted with electronically controlled fuel injection systems and sophisticated and expensive after-treatment devices. Further improvements are still needed to meet future goals in better fuel economy and the more stringent emission standards. In order to meet these goals, there is a need for the control of the combustion process to reduce engine-out emissions in real-time and reduce the demand on the after-treatment devices. This requires …


Experimental Study On The Fabrication Of Advanced Materials For Energy Applications Using High Energy Mechanical Milling, Ashvin Kumar Narayana Swamy Jan 2013

Experimental Study On The Fabrication Of Advanced Materials For Energy Applications Using High Energy Mechanical Milling, Ashvin Kumar Narayana Swamy

Open Access Theses & Dissertations

The reaction of aluminum (Al) powder with water has the potential for on demand hydrogen generation. Conventional Al powders, however, react with water slowly due to a highly protective oxide layer on the particle surface. Current methods for Al activation involve harmful and expensive materials. The nano-scale Al powders also remain very expensive and have problems such as a large amount of oxide on the surface. The use of aluminum in an energy generation cycle is also hindered by the fact that, although Al is the most abundant metal in the Earth's crust, its recovery from ore consumes a lot …