Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

PDF

Faculty Publications

Absorption

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Dynamic Control Of Radiative Surface Properties With Origami-Inspired Design, Rydge B. Mulford, Matthew R. Jones, Brian D. Iverson Mar 2016

Dynamic Control Of Radiative Surface Properties With Origami-Inspired Design, Rydge B. Mulford, Matthew R. Jones, Brian D. Iverson

Faculty Publications

Thermal management systems for space equipment commonly use static solutions that do not adapt to environmental changes. Dynamic control of radiative surface properties is one way to respond to environmental changes and to increase the capabilities of spacecraft thermal management systems. This paper documents an investigation of the extent to which origami-inspired surfaces may be used to control the apparent absorptivity of a reflective material. Models relating the apparent absorptivity of a radiation shield to time-dependent surface temperatures are presented. Results show that the apparent absorptivity increases with increasing fold density and indicate that origami-inspired designs may be used to …


Host-Guest Interaction Dictated Selective Adsorption And Fluorescence Quenching Of A Luminescent Lightweight Metal-Organic Framework Toward Liquid Explosives, Dan Liu, Xiaojuan Liu, Yongxin Liu, Yang Yu, Fanglin Chen, Cheng Wang Oct 2014

Host-Guest Interaction Dictated Selective Adsorption And Fluorescence Quenching Of A Luminescent Lightweight Metal-Organic Framework Toward Liquid Explosives, Dan Liu, Xiaojuan Liu, Yongxin Liu, Yang Yu, Fanglin Chen, Cheng Wang

Faculty Publications

In this article, we report the successful preparation of a Mg-based luminescent MIL-53 metal–organic framework (MOF), namely [Mg2(BDC)2(BPNO)]·2DMF (1) (BDC = 1,4-benzene dicarboxylate, BPNO = 4,4’- dipyridyl-N,N’-dioxide, DMF = N,N-dimethylformamide) in a mixed solvent containing a 2 : 3 volume ratio of DMF and ethanol (EtOH) under solvothermal conditions. Desolvated compound 1a can be used as an absorbent for selective adsorption and separation of liquid explosives, including nitroaromatic (nitrobenzene (NB)) and nitroaliphatic (nitromethane (NM) and nitroethane (NE)) compounds, through single crystal-to-single crystal (SC–SC) transformations. As one of the weakly luminescent MOFs, the luminescence of compound 1a could be quenched by …