Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Entire DC Network

Graphene Twistronics: Tuning The Absorption Spectrum And Achieving Metamaterial Properties, Ammar Armghan, Meshari Alsharari, Khaled Aliqab, Osamah Alsalman, Juveriya Parmar, Shobhit K. Patel Mar 2023

Graphene Twistronics: Tuning The Absorption Spectrum And Achieving Metamaterial Properties, Ammar Armghan, Meshari Alsharari, Khaled Aliqab, Osamah Alsalman, Juveriya Parmar, Shobhit K. Patel

Department of Mechanical and Materials Engineering: Faculty Publications

Graphene twistronics using multilayer graphene is presented in such a way that it provides a metamaterial effect. This manuscript also analyzes the prediction of behavior using machine learning. The metamaterial effect is achieved by twisting the graphene layers. Graphene twistronics is a new concept for changing the electrical and optical properties of bilayer graphene by applying a small angle twist between the layers. The angle twists of 5o, 10o, and 15o are analyzed for the proposed graphene twistronics design. Tuning in the absorption spectrum is achieved by applying small twists to the angles of the …


Study Of The Thermodynamic Properties Absorbation Sulfur Storage Gas Of Zinc And Copper Industry, Berdiyarov Tilovkabulovich Berdiyarov Dr., Sh. T. Khojiev, S. T. Matkarimov, Sh. Munosibov Dec 2021

Study Of The Thermodynamic Properties Absorbation Sulfur Storage Gas Of Zinc And Copper Industry, Berdiyarov Tilovkabulovich Berdiyarov Dr., Sh. T. Khojiev, S. T. Matkarimov, Sh. Munosibov

Technical science and innovation

The article considers the problems of utilization of industrial gases formed in the production of copper and ore containing sulfur anhydrides. Currently, the composition of process gases entering the gas purification department is approximately 6-7% SO2, 0.2-0.3% SO3 and other gases, until sulfuric acid is obtained from these gases, the sulfate is treated in a counter-scheme with 8% sulfate acid. The aim is to first reduce the temperature of the exhaust gases and second to avoid flying components such as as As, F, Se. As a result of the studies, the amount of SO2 in the …


Energy Efficiency And Economic Feasibility Of An Absorption Air-Conditioning System Using Wet, Dry And Hybrid Heat Rejection Methods, Julia Aman, Paul Henshaw, David S-K Ting Nov 2017

Energy Efficiency And Economic Feasibility Of An Absorption Air-Conditioning System Using Wet, Dry And Hybrid Heat Rejection Methods, Julia Aman, Paul Henshaw, David S-K Ting

Mechanical, Automotive & Materials Engineering Publications

In tropical and sub-tropical regions, air-conditioning systems account for the greatest electricity consumption and high water use. Solar-driven absorption cooling systems can conveniently reduce electricity consumption at need. The performance of this cooling system depends on the system’s heat rejection. A simulation was performed for a 15 kW single effect ammonia-water absorption cooling system driven by low temperature thermal energy and with three different heat rejection methods (wet cooling, dry cooling, and hybrid cooling). This hybrid cooling system uses wet cooling on the absorber and dry cooling on the condenser. The system performance and economics of the chiller with these …


Measurement Of Impact Forces On Teeth And Jaw When Wearing Sports Mouth Guards, Alghamdi Abdullah, Alnaser Mobarak, Quiroz Ingrid, Serrate Ciro Alcoba, Veizaga Rodrigo Jan 2017

Measurement Of Impact Forces On Teeth And Jaw When Wearing Sports Mouth Guards, Alghamdi Abdullah, Alnaser Mobarak, Quiroz Ingrid, Serrate Ciro Alcoba, Veizaga Rodrigo

Capstone Design Expo Posters

The objective of this project is to accurately measure the forces the teeth and jaw experience when subjected to impact. For this purpose piezoelectric technology (PVDF), which converts voltage to force and vice versa can be used to measure forces applied to teeth. A PVDF cable is calibrated and used for measuring force along with a control measuring device (PCB Piezotronics). The method involves wrapping the PVDF cable around a 3D home-printed, customized denture. The cable was chosen due to the fact that it allows for adequate fit between mouth guard and denture. Two masses, a baseball and 2 lbs …


Dynamic Control Of Radiative Surface Properties With Origami-Inspired Design, Rydge B. Mulford, Matthew R. Jones, Brian D. Iverson Mar 2016

Dynamic Control Of Radiative Surface Properties With Origami-Inspired Design, Rydge B. Mulford, Matthew R. Jones, Brian D. Iverson

Faculty Publications

Thermal management systems for space equipment commonly use static solutions that do not adapt to environmental changes. Dynamic control of radiative surface properties is one way to respond to environmental changes and to increase the capabilities of spacecraft thermal management systems. This paper documents an investigation of the extent to which origami-inspired surfaces may be used to control the apparent absorptivity of a reflective material. Models relating the apparent absorptivity of a radiation shield to time-dependent surface temperatures are presented. Results show that the apparent absorptivity increases with increasing fold density and indicate that origami-inspired designs may be used to …


Quantitative Time-Averaged Gas And Liquid Distributions Using X-Ray Fluorescence And Radiography In Atomizing Sprays, Christopher D. Radke, J. Patrick Mcmanamen, Alan L. Kastengren, Benjamin R. Halls, Terrence R. Meyer Nov 2015

Quantitative Time-Averaged Gas And Liquid Distributions Using X-Ray Fluorescence And Radiography In Atomizing Sprays, Christopher D. Radke, J. Patrick Mcmanamen, Alan L. Kastengren, Benjamin R. Halls, Terrence R. Meyer

Terrence R Meyer

A method for quantitative measurements of gas and liquid distributions is demonstrated using simultaneous x-ray fluorescence and radiography of both phases in an atomizing coaxial spray. Synchrotron radiation at 10.1 keV from the Advanced Photon Source at Argonne National Laboratory is used for x-ray fluorescence of argon gas and two tracer elements seeded into the liquid stream. Simultaneous time-resolved x-ray radiography combined with timeaveraged dual-tracer fluorescence measurements enabled corrections for reabsorption of x-ray fluorescence photons for accurate, line-of-sight averaged measurements of the distribution of the gas and liquid phases originating from the atomizing nozzle.


Spotlight On Available Optical Properties And Models Of Nanofluids: A Review Mar 2015

Spotlight On Available Optical Properties And Models Of Nanofluids: A Review

Faculty of Engineering University of Malaya

Optical characteristics besides unique thermo-physical properties of nanoparticles have encouraged researchers to use nanofluids in solar energy collectors or reservoirs as electromagnetic wave absorbing media. Recently, different analyses and approaches have been proposed by researchers. However, the appropriate electro-magnetic phenomenon of nanofluids is not established till date because of the complex dependence between nanoparticles and base fluids. In this work, optical properties of nanofluids are discussed on the basis of published data; mostly used models are presented along with their limitations and applications. (C) 2014 Elsevier Ltd. All rights reserved. Link to Full-Text Articles : http://www.sciencedirect.com/science/article/pii/S1364032114009411


Host-Guest Interaction Dictated Selective Adsorption And Fluorescence Quenching Of A Luminescent Lightweight Metal-Organic Framework Toward Liquid Explosives, Dan Liu, Xiaojuan Liu, Yongxin Liu, Yang Yu, Fanglin Chen, Cheng Wang Oct 2014

Host-Guest Interaction Dictated Selective Adsorption And Fluorescence Quenching Of A Luminescent Lightweight Metal-Organic Framework Toward Liquid Explosives, Dan Liu, Xiaojuan Liu, Yongxin Liu, Yang Yu, Fanglin Chen, Cheng Wang

Faculty Publications

In this article, we report the successful preparation of a Mg-based luminescent MIL-53 metal–organic framework (MOF), namely [Mg2(BDC)2(BPNO)]·2DMF (1) (BDC = 1,4-benzene dicarboxylate, BPNO = 4,4’- dipyridyl-N,N’-dioxide, DMF = N,N-dimethylformamide) in a mixed solvent containing a 2 : 3 volume ratio of DMF and ethanol (EtOH) under solvothermal conditions. Desolvated compound 1a can be used as an absorbent for selective adsorption and separation of liquid explosives, including nitroaromatic (nitrobenzene (NB)) and nitroaliphatic (nitromethane (NM) and nitroethane (NE)) compounds, through single crystal-to-single crystal (SC–SC) transformations. As one of the weakly luminescent MOFs, the luminescence of compound 1a could be quenched by …


Residential Solar Air Conditioning: Energy And Exergy Analyses Of An Ammonia-Water Absorption Cooling System, Julia Aman, David S-K Ting, Paul Henshaw Jan 2014

Residential Solar Air Conditioning: Energy And Exergy Analyses Of An Ammonia-Water Absorption Cooling System, Julia Aman, David S-K Ting, Paul Henshaw

Mechanical, Automotive & Materials Engineering Publications

Large scale heat-driven absorption cooling systems are available in the marketplace for industrial applications but the concept of a solar driven absorption chiller for air-conditioning applications is relatively new. Absorption chillers have a lower efficiency than compression refrigeration systems, when used for small scale applications and this restrains the absorption cooling system from air conditioning applications in residential buildings. The potential of a solar driven ammonia-water absorption chiller for residential air conditioning application is discussed and analyzed in this paper. A thermodynamic model has been developed based on a 10 kW air cooled ammonia-water absorption chiller driven by solar thermal …


Capillarity And Two-Phase Fluid Transport In Media With Fibers Of Dissimilar Properties, Thomas M. Bucher Jr. Jan 2014

Capillarity And Two-Phase Fluid Transport In Media With Fibers Of Dissimilar Properties, Thomas M. Bucher Jr.

Theses and Dissertations

Capillarity is a physical phenomenon that acts as a driving force in the displacement of one fluid by another within a porous medium. This mechanism operates on the micro and nanoscale, and is responsible for countless observable events. This can include applications such as absorption in various hygiene products, self-cleaning surfaces such as water beading up and rolling off a specially-coated windshield, anti-icing, and water management in fuel cells, among many others.

The most significant research into capillarity has occurred within the last century or so. Traditional formulations for fluid absorption include the Lucas–Washburn model for porous media, which is …


Sound Absorption Properties Of Functionally Graded Polyurethane Foams, Olivier Doutres Ph.D., Noureddine Atalla Pr. Aug 2012

Sound Absorption Properties Of Functionally Graded Polyurethane Foams, Olivier Doutres Ph.D., Noureddine Atalla Pr.

Olivier Doutres Ph.D.

Noise control over a wide frequency band is an increasingly important design criterion in the building and transport industries. Examples of well known broadband passive concepts for optimal sound absorption are multi-layering with graded properties across the thickness and optimization of the material shape (e.g., wedges). However, for typical applications, the material thickness is limited and shaping or use of different material costly. Thus, there is growing interest for developing acoustical materials having microstructure properties gradient at the micro- or meso-scale; also known as Functionally Graded Materials (FGM). Even if sophisticated models are available to predict the acoustic behavior of …


A Fast Nir Spectrometer For Examining Explosive Events: Emission Of Petn Based Explosives And H2O Absorption Method Feasibility, Scott Piecuch Dec 2009

A Fast Nir Spectrometer For Examining Explosive Events: Emission Of Petn Based Explosives And H2O Absorption Method Feasibility, Scott Piecuch

Master's Theses (2009 -)

The chemical dynamics and decomposition pathways of explosive materials are not entirely known. Measurements of chemical transients during explosive events can lead to enhanced knowledge of the detailed chemistry and eventually control of the end products; however, these measurements are often difficult to obtain due to fast time scales and harsh environments. Optical diagnostics present fast-response, minimally invasive methods for resolving properties in detonation environments and previous fast spectroscopic measurements have been recorded in the ultra-violet and visible regions. This work extends the range of such measurements to the near-infrared (NIR) through the development of a fiber-coupled NIR spectrometer utilizing …


Physical And Chemical Characteristics Of Commercially Available Brake Shoe Lining Materials: A Comparative Study Nov 2004

Physical And Chemical Characteristics Of Commercially Available Brake Shoe Lining Materials: A Comparative Study

A.S. Md Abdul Haseeb

The physical and chemical characteristics of four commercial automotive brake shoe lining materials used in heavy vehicles have been investigated and compared. Relevant physical properties viz. density, water absorption and swelling characteristics were determined using standard test methods. X-ray diffraction, infrared spectroscopy and optical microscopic techniques were used to identify the constituents. It has been observed that all of the four friction materials contain phenol formaldehyde resin as the matrix. Other major ingredients were also the same in all the samples but their amount and size varied. These include asbestos as fibre reinforcement, barium sulphate as filler and brass particles …


Physical And Chemical Characteristics Of Commercially Available Brake Shoe Lining Materials: A Comparative Study Nov 2004

Physical And Chemical Characteristics Of Commercially Available Brake Shoe Lining Materials: A Comparative Study

A.S. Md Abdul Haseeb

The physical and chemical characteristics of four commercial automotive brake shoe lining materials used in heavy vehicles have been investigated and compared. Relevant physical properties viz. density, water absorption and swelling characteristics were determined using standard test methods. X-ray diffraction, infrared spectroscopy and optical microscopic techniques were used to identify the constituents. It has been observed that all of the four friction materials contain phenol formaldehyde resin as the matrix. Other major ingredients were also the same in all the samples but their amount and size varied. These include asbestos as fibre reinforcement, barium sulphate as filler and brass particles …