Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Manufacturing

NURBS

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

A Large Deformation, Rotation-Free, Isogeometric Shell, D. J. Benson, Y. Bazilevs, Ming-Chen Hsu, T. J. R. Hughes Mar 2011

A Large Deformation, Rotation-Free, Isogeometric Shell, D. J. Benson, Y. Bazilevs, Ming-Chen Hsu, T. J. R. Hughes

Ming-Chen Hsu

Conventional finite shell element formulations use rotational degrees of freedom to describe the motion of the fiber in the Reissner–Mindlin shear deformable shell theory, resulting in an element with five or six degrees of freedom per node. These additional degrees of freedom are frequently the source of convergence difficulties in implicit structural analyses, and, unless the rotational inertias are scaled, control the time step size in explicit analyses. Structural formulations that are based on only the translational degrees of freedom are therefore attractive. Although rotation-free formulations using C0 basis functions are possible, they are complicated in comparison to their C1 …


A Generalized Finite Element Formulation For Arbitrary Basis Functions: From Isogeometric Analysis To Xfem, D. J. Benson, Y. Bazilevs, E. Deluycker, Ming-Chen Hsu, M. Scott, T. J. R. Hughes, T. Belytschko Aug 2010

A Generalized Finite Element Formulation For Arbitrary Basis Functions: From Isogeometric Analysis To Xfem, D. J. Benson, Y. Bazilevs, E. Deluycker, Ming-Chen Hsu, M. Scott, T. J. R. Hughes, T. Belytschko

Ming-Chen Hsu

Many of the formulations of current research interest, including iosogeometric methods and the extended finite element method, use nontraditional basis functions. Some, such as subdivision surfaces, may not have convenient analytical representations. The concept of an element, if appropriate at all, no longer coincides with the traditional definition. Developing a new software for each new class of basis functions is a large research burden, especially, if the problems involve large deformations, non-linear materials, and contact. The objective of this paper is to present a method that separates as much as possible the generation and evaluation of the basis functions from …