Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Engineering

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 85

Full-Text Articles in Entire DC Network

“Increasing Renewable Energy Potential Of Landfill Gas By Electrocatalytic Conversion Of Carbon Dioxide To Methane At Low Temperature.”, Asma Akter Rony Dec 2023

“Increasing Renewable Energy Potential Of Landfill Gas By Electrocatalytic Conversion Of Carbon Dioxide To Methane At Low Temperature.”, Asma Akter Rony

Civil Engineering Dissertations

The conversion of carbon dioxide into methane at a low temperature has great potential to reduce current international environmental issues like global warming and will create new sources of renewable energy. The overall goal of this research is to increase renewable energy production from landfill gas using an unconventional process – electrocatalytic methanation of carbon dioxide – which has not been implemented for landfill gas yet. The electrocatalytic methanation follows the Waseda process, which applies an electric field in the presence of a Ruthenium-supported cerium oxide (CeO2) catalyst. The specific objectives of this research were: 1. To explore the impact …


Protein A And Multimodal Anion-Exchange Membrane Adsorbers For Downstream Purification Of Therapeutic Biomolecules, Joshua Osuofa Aug 2023

Protein A And Multimodal Anion-Exchange Membrane Adsorbers For Downstream Purification Of Therapeutic Biomolecules, Joshua Osuofa

All Dissertations

This dissertation explores development and characterization of membrane chromatography tools for downstream purification of therapeutic biomolecules. Convective technologies, particularly membrane chromatography, are emerging in the field of bioseparations as an alternative to resin chromatography due to their improved throughput capability. On the forefront of emerging membrane technologies are multimodal and Protein A membrane adsorbers. The overarching theme of this dissertation research was to investigate advances in these membrane chromatography tools. The primary objective was to develop and characterize novel Protein A membrane adsorbers. A secondary objective was to characterize newly commercialized Protein A and multimodal anion exchange membrane adsorbers.

Two …


An Acid Baking Approach To Enhance Rare Earth Element Recovery From Bituminous Coal Sources, Ahmad Nawab Jan 2023

An Acid Baking Approach To Enhance Rare Earth Element Recovery From Bituminous Coal Sources, Ahmad Nawab

Theses and Dissertations--Mining Engineering

Rare earth elements (REE) are a group of 17 elements typically classified as light and heavy rare earth elements, which play a crucial role in developing the latest technologies for energy, defense, and medical sectors. Even though REEs have been found in more than 200 minerals, only bastnaesite, monazite and xenotime are commercially exploited for REE extraction. However, the recent exponential increase in REE demand has spurred countries such as the United States into research for the extraction of REEs from secondary sources such as coal, acid mine drainage, and coal ash. Several coal sources (e.g., Fire Clay seam coal) …


Girls In Stem! Elementary Afterschool Six-Week Curriculum, Jess Li, Samavi Rafique Aug 2022

Girls In Stem! Elementary Afterschool Six-Week Curriculum, Jess Li, Samavi Rafique

Honors Expanded Learning Clubs

No abstract provided.


Indoor Air Quality Through The Lens Of Outdoor Atmospheric Chemistry, Jonathan P.D. Abbatt, Douglas B. Collins Jan 2022

Indoor Air Quality Through The Lens Of Outdoor Atmospheric Chemistry, Jonathan P.D. Abbatt, Douglas B. Collins

Faculty Contributions to Books

Outdoor atmospheric chemistry and air quality have been the topic of research that intensified in earnest around the mid-20th century, while indoor air quality research has only been a key focus of chemical researchers over the last 30 years. Examining practices and approaches employed in the outdoor atmospheric chemistry research enterprise provides an additional viewpoint from which we can chart new paths to increase scientific understanding of indoor chemistry. This chapter explores our understanding of primary chemical sources, homogeneous and multiphase reactivity, gas-surface partitioning, and the coupling between the chemistry and dynamics of indoor air through the lens of …


Three Dimensional Photonics Structures: Design And Applications, Mansoor Sultan Jan 2022

Three Dimensional Photonics Structures: Design And Applications, Mansoor Sultan

Theses and Dissertations--Electrical and Computer Engineering

Photonics is an emerging technology for light control, emission, and detection. Photonic devices control photons the same way electronic circuits control electrons in active or passive mode depending on the energy requirement of the device. This dissertation will discuss the design, fabrication, testing of photonic structures with applications including imaging and renewable energy. First, we developed a novel lithography method for fluoropolymer resist based on variable pressure electron beam lithography (VP-EBL). VP-EBL proves to be an efficient method for patterning a widely used, but challenging to process, fluoropolymer, Teflon AF. However, rather than solely mitigating charging, the ambient gas is …


Unintended Consequences Of Air Cleaning Chemistry, Douglas B. Collins, Delphine K. Farmer Aug 2021

Unintended Consequences Of Air Cleaning Chemistry, Douglas B. Collins, Delphine K. Farmer

Faculty Journal Articles

Amplified interest in maintaining clean indoor air associated with the airborne transmission risks of SARS-CoV-2 have led to an expansion in the market for commercially available air cleaning systems. While the optimal way to mitigate indoor air pollutants or contaminants is to control (remove) the source, air cleaners are a tool for use when absolute source control is not possible. Interventions for indoor air quality management include physical removal of pollutants through ventilation or collection on filters and sorbent materials, along with chemically reactive processes that transform pollutants or seek to deactivate biological entities. This perspective intends to highlight the …


Accident Tolerant Fuels Claddings And The Evolution Of Their Surface Characteristics Under Critical Heat Flux, Rajnikant V. Umretiya Jan 2021

Accident Tolerant Fuels Claddings And The Evolution Of Their Surface Characteristics Under Critical Heat Flux, Rajnikant V. Umretiya

Theses and Dissertations

Enhanced Accident Tolerant Fuels (ATFs) systems for light water reactors require higher temperature oxidation resistance in steam environments than the current UO2 – zirconium fuel system. Investigating the ATF materials’ surface properties is needed as they have evidenced to affect the Critical Heat Flux (CHF), which is an important parameter of the thermal-hydraulic performance required to provide safety margins. In this dissertation, the surface properties of FeCrAl alloys (APMT and C26M), Zircaloy-2, Zircaloy-4, and Cr-coating on Zircaloy-4 substrates produced by Physical Vapor Deposition (PVD) and Cold Spray (CS) were investigated according to their chemistry, topography, and wettability. The static …


Surface Enhanced Raman Spectroscopy (Sers) As A Nanoscale Adsorption Phenomenon: Development Of Tailored Nanomaterials For Applications In Drug Detection, Chiara Deriu Nov 2020

Surface Enhanced Raman Spectroscopy (Sers) As A Nanoscale Adsorption Phenomenon: Development Of Tailored Nanomaterials For Applications In Drug Detection, Chiara Deriu

FIU Electronic Theses and Dissertations

Surface Enhanced Raman Spectroscopy (SERS) is an analytical technique in which nanostructured substrates amplify the inherently weak Raman signal of an adsorbed species by several orders of magnitude, enabling the detection of trace compounds, up to the single molecule level. While this may be an exceptional tool for any analytical scientist, SERS is at present relegated to the role of academic sensation, and is underutilized in everyday analytical practice. The SERS community is increasingly attributing this setback to a poor understanding of nanoscale surfaces and their chemical environment; since molecular adsorption at the nanostructured surface enables SERS detection, uncertainty about …


Fundamental Understanding Of Plasma Discharge Formation In Liquid And Multiphase Configurations Through Multiphysics Modeling, Ali Charchi Aghdam Jul 2020

Fundamental Understanding Of Plasma Discharge Formation In Liquid And Multiphase Configurations Through Multiphysics Modeling, Ali Charchi Aghdam

Theses and Dissertations

During the last two decades, non-thermal plasma discharges in and in contact with liquids have received significant attention due to their wide range of applications including chemical analysis, medical, water treatment, fuel processing, etc. Despite the tremendous interest and advances attained in the experimental studies, modeling efforts providing a comprehensive understanding of the underlying physicochemical processes are limited. There is still no unified theory on plasma formation in dense medium and various theories have been proposed such as the presence of bubbles and tunneling which are topics of debate. In the first part of this study, a mathematical model is …


Optimization And Longevity Of Functionalized Multi-Walled Carbon Nanotube-Enabled Membranes For Water Treatment, Madeleine Michael Isabella White Jun 2020

Optimization And Longevity Of Functionalized Multi-Walled Carbon Nanotube-Enabled Membranes For Water Treatment, Madeleine Michael Isabella White

Master's Theses

Water scarcity is a growing concern at the global scale. Large scale water reuse is growing both in necessity and popularity. Before water reuse can be performed efficiently on a large scale or be used for potable supply, even indirectly, contaminants of emerging concern (CECs) will need to be treated at the full scale. Advanced oxidation processes (AOPs) are a form of advanced water treatment capable of treating a wide range of CECs. This study contributes to the growing field of AOPs and more specifically AOPs using ozone combined with functionalized multi-walled carbon nanotubes (MWCNTs). Ozonation of MWCNTs has been …


Hierarchical Hybrid Materials From Flexible Fabric Substrates, Wenhu Wang Jan 2020

Hierarchical Hybrid Materials From Flexible Fabric Substrates, Wenhu Wang

Browse all Theses and Dissertations

The goal of this project is to investigate fabrication approaches and structure-property relationships of porous and flexible hierarchical hybrid solids suitable for advanced surface-active devices. Multi-scale hierarchical carbon materials are being fabricated by strong covalent attachment of multiwall carbon nanotube(MWCNTs) arrays on flexible carbon fabric substrates in order to enhance the surface area per unit volume. This was done using chemical vapor deposition (CVD) after functionalizing the surface with a plasma-derived nano-oxide coating. Structural and chemical characterization is performed using scanning electron microscope(SEM), energy dispersive spectroscopy(EDS) and x-ray photoelectron spectroscopy(XPS). Surface area estimates have been made by building structural models …


Optimization Of E-Textiles For Lactic Acid Detection, Andrew Laboy, Mallory David Jan 2020

Optimization Of E-Textiles For Lactic Acid Detection, Andrew Laboy, Mallory David

Williams Honors College, Honors Research Projects

The overall goal of the project is to develop an e-textile that will be able to determine different characteristics of an athlete's health through multiple sensors. The goal of these sensors is to monitor physiological parameters for health and fitness uses in real time. Building from the existing sodium concentration sensor, these new sensors will detect lactate levels within sweat to monitor instantaneous health which allows customization of workout and overall health regimen.


High-Pressure Studies On The Transition From Red Phosphorus To Black Phosphorus, Heng Xiang Dec 2019

High-Pressure Studies On The Transition From Red Phosphorus To Black Phosphorus, Heng Xiang

Electronic Thesis and Dissertation Repository

Black phosphorus (BP) is a promising material in many research fields. However, the transition process from amorphous red phosphorus (ARP) is elusive and hence hinders large scale synthesis and applications. This work describes the application of the high-pressure method to study the transition process from ARP to BP.

In this thesis, the following three objectives were achieved: (1) to understand the mechanism of the transition, (2) to facilitate the synthesis of BP by taking the advantage of less pure ARP, (3) to propose new methods of synthesizing BP-based materials, such as the moderately oxidized BP and the black phosphorus/ amorphous …


Organic/Inorganic Interfacial Interactions Affecting Metal Reactivity: Water Treatment And Sensor Applications, Mohamed Nabil Shaikh Aug 2019

Organic/Inorganic Interfacial Interactions Affecting Metal Reactivity: Water Treatment And Sensor Applications, Mohamed Nabil Shaikh

Civil Engineering ETDs

The aim of this dissertation was to investigate the interactions occurring at the organic – inorganic interface between solid media and aqueous contaminants for water treatment and sensor applications. The gaps in current literature on these interfacial organic-inorganic interactions must be bridged in order to develop advanced water treatment and monitoring technologies for improving water quality and thus, restore and protect the contaminated water resources. As a part of this dissertation, manganese oxides-based composites and electrospun polymer mats were developed and investigated for gaining mechanistic insights of organic (bisphenol A and acetaminophen) and inorganic (uranium) contaminants removal, respectively. These reactions …


Characterization Of Biofilms In A Synthetic Rhizosphere Using Hollow Fiber Root-Mimetic Systems, Michelle Bonebrake Aug 2019

Characterization Of Biofilms In A Synthetic Rhizosphere Using Hollow Fiber Root-Mimetic Systems, Michelle Bonebrake

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The area around a plant’s roots hosts a complex and diverse microbial community. This environment can include a large number of bacteria that live on the surface of the root and benefit from the nutrients that the roots exude into the soil. These microbes can in turn be beneficial to the plant by protecting the roots from harmful fungi or stressful environmental conditions such as drought. In this thesis, several root-mimetic systems (RMSs) were developed for the study and growth of plant-beneficial bacteria in the laboratory environment. The RMS uses a porous hollow fiber used in hemodialysis as a surface …


High Injection Pressure Dme Ignition And Combustion Processes: Experiment And Simulation, Xiucheng Zhu Jan 2019

High Injection Pressure Dme Ignition And Combustion Processes: Experiment And Simulation, Xiucheng Zhu

Dissertations, Master's Theses and Master's Reports

With nearly smokeless combustion, Dimethyl Ether (DME) can be pressurized and used as a liquid fuel for compression-ignition (CI) combustion. However, due to its lower heating value and liquid density compared with diesel fuel, DME has a smaller energy content per unit volume. To obtain an equivalent energy content of diesel, approximately 1.86 times more quantity of DME is required. This can be addressed by a larger nozzle size or higher injection pressure. However, the effect of high injection pressure on DME spray combustion characteristics have not yet been well understood. In order to fill this gap, spray and combustion …


Lignocellulosic Biomass Derived Activated Carbon For Energy Storage And Adsorption, Changle Jiang Jan 2019

Lignocellulosic Biomass Derived Activated Carbon For Energy Storage And Adsorption, Changle Jiang

Graduate Theses, Dissertations, and Problem Reports

Lignocellulosic biomass has been converted to hierarchical porous carbon materials which possess macro-, meso- and micro-pores. The natural structure of porous lignocellulosic structure was preserved during activation with further developed porosity by the activation. The activated carbon can be well applied to electrochemical double layer capacitor for transportation storage of ions as well as adsorbent materials for metal ion removal from wastewater.

The first chapter of this dissertation presents an introduction of biomass derived carbon and its applications. In the second chapter, both direct and indirect activation methods using carbon dioxide were adopted in this study. The results show that …


Mineralogy And Geochemistry Of Feed Coals And Combustion Residues From Tunçbilek And Seyitömer Coal-Fired Power Plants In Western Turkey, Ali Ihsan Karayigit, Ozlem Yigitler, Seda Iserli, Xavier Querol, Maria Mastalerz, Riza Gorkem Oskay, James C. Hower Jan 2019

Mineralogy And Geochemistry Of Feed Coals And Combustion Residues From Tunçbilek And Seyitömer Coal-Fired Power Plants In Western Turkey, Ali Ihsan Karayigit, Ozlem Yigitler, Seda Iserli, Xavier Querol, Maria Mastalerz, Riza Gorkem Oskay, James C. Hower

Coal Combustion and Gasification Products Journal Archive

This study focuses on the enrichment of elements in feed coal (FC) and combustion residues, namely, fly ash (FA) and bottom ash (BA) samples, picked up from the Tunçbilek and Seyitömer coal-fired power plants in western Turkey. The FCs in both plants have generally similar mineralogical compositions, although siderite and dolomite are more prominent in Tunçbilek and feldspar and pyrite are more abundant in Seyitömer. Minerals in the FA from both power plants are mainly quartz, hematite, magnetite, anhydrite, and mullite. Along with quartz, the Fe-oxides are dominant phases in the BA samples. Accessory minerals in the FCs, FAs, and …


Effectiveness Evaluation Of Fluorescent Tracer In Shaly-Sandstone Reservoir, Harid Pataveepaisit Jan 2019

Effectiveness Evaluation Of Fluorescent Tracer In Shaly-Sandstone Reservoir, Harid Pataveepaisit

Chulalongkorn University Theses and Dissertations (Chula ETD)

In petroleum exploration and production industry, tracer is a compound added to injected fluids, and can be easily detected even in a trace amount. Fluorescein sodium, a chemical tracer that can illuminate upon receiving a specific wavelength of light, was mentioned by several literatures due to its strong fluorescence at low concentration, non-toxicity, and non-biodegradability. In this study, fluorescein sodium in the form of fluorescein solution was evaluated with shaly-sandstone to observe their interactions. The first half of this study focused on the evaluation of the chemical characteristics of fluorescein. First, the detection limit of fluorescein solution in deionized water …


Reverse Flotation Separation Of Fluorite From Calcite: A Novel Reagent Scheme, Jianjun Wang, Zihan Zhou, Yuesheng Gao, Wei Sun, Yuehua Hu, Zhiyong Gao Jul 2018

Reverse Flotation Separation Of Fluorite From Calcite: A Novel Reagent Scheme, Jianjun Wang, Zihan Zhou, Yuesheng Gao, Wei Sun, Yuehua Hu, Zhiyong Gao

Michigan Tech Publications

Fluorite (CaF2), as an important strategic mineral source, is usually separated from calcite by the common froth flotation method, but this separation is still not selective enough. The development of a selective collector and/or depressant is the key to achieving high selective separation. 1-Hydroxyethylidene-1,1-diphosphonic acid (HEDP or H4L) is widely used as an environmentally friendly water treatment reagent due to its low cost and excellent anti-scaling performance in an aqueous solution. In this study, a novel reagent scheme was developed using HEDP as a fluorite depressant and sodium oleate (NaOL) as a calcite collector for the …


Defect Chemistry And Transport Properties Of Solid State Materials For Energy Storage Applications, Xiaowen Zhan Jan 2018

Defect Chemistry And Transport Properties Of Solid State Materials For Energy Storage Applications, Xiaowen Zhan

Theses and Dissertations--Chemical and Materials Engineering

Replacing organic liquid electrolytes with nonflammable solid electrolytes can improve safety, offer higher volumetric and gravimetric energy densities, and lower the cost of lithium-ion batteries. However, today’s all-solid-state batteries suffer from low Li-ion conductivity in the electrolyte, slow Li-ion transport across the electrolyte/electrode interface, and slow solid-state Li-ion diffusion within the electrode. Defect chemistry is critical to understanding ionic conductivity and predicting the charge transport through heterogeneous solid interfaces. The goal of this dissertation is to analyze and improve solid state materials for energy storage applications by understanding their defect structure and transport properties.

I have investigated defect chemistry of …


Organometal Halide Perovskite Solar Absorbers And Ferroelectric Nanocomposites For Harvesting Solar Energy, Chaminda Lakmal Hettiarachchi Nov 2017

Organometal Halide Perovskite Solar Absorbers And Ferroelectric Nanocomposites For Harvesting Solar Energy, Chaminda Lakmal Hettiarachchi

USF Tampa Graduate Theses and Dissertations

Organometal halide perovskite absorbers such as methylammonium lead iodide chloride (CH3NH3PbI3-xClx), have emerged as an exciting new material family for photovoltaics due to its appealing features that include suitable direct bandgap with intense light absorbance, band gap tunability, ultra-fast charge carrier generation, slow electron-hole recombination rates, long electron and hole diffusion lengths, microsecond-long balanced carrier mobilities, and ambipolarity. The standard method of preparing CH3NH3PbI3-xClx perovskite precursors is a tedious process involving multiple synthesis steps and, the chemicals being used (hydroiodic acid …


Studying Chromium And Nickel Equivalency To Identify Viable Additive Manufacturing Stainless Steel Chemistries, Zachary T. Hilton, Joseph William Newkirk, Ronald J. O'Malley Aug 2017

Studying Chromium And Nickel Equivalency To Identify Viable Additive Manufacturing Stainless Steel Chemistries, Zachary T. Hilton, Joseph William Newkirk, Ronald J. O'Malley

Materials Science and Engineering Faculty Research & Creative Works

Chromium and nickel equivalency modeling has long been used in welding to determine the weldability of steel chemistries. A study was conducted to determine the applicability of Cr-Ni modeling to the additive manufacturing process. Many AM methods involve rapid solidification of small melt pools, similar to welding. Chemistries with varying Cr/Ni ratios were selected for use in a selective laser melting process and modeled using known models. Initial results indicate that the standard "safe welding zone" may not directly apply to additive manufacturing. The capability to build with chemistries outside the weldability “safe zone” could result in improved and varied …


Computational Study Of Mos2/Hfo2 Defective Interfaces For Nanometer-Scale Electronics, Santosh Kc, Roberto Longo, Robert Wallace, Kyeongjae Cho Jun 2017

Computational Study Of Mos2/Hfo2 Defective Interfaces For Nanometer-Scale Electronics, Santosh Kc, Roberto Longo, Robert Wallace, Kyeongjae Cho

Faculty Publications

Atomic structures and electronic properties of MoS2/HfO2 defective interfaces are investigated extensively for future field-effect transistor device applications. To mimic the atomic layer deposition growth under ambient conditions, the impact of interfacial oxygen concentration on the MoS2/HfO2 interface electronic structure is examined. Then, the effect on band offsets (BOs) and the thermodynamic stability of those interfaces is investigated and compared with available relevant experimental data. Our results show that the BOs can be modified up to 2 eV by tuning the oxygen content through, for example, the relative partial pressure. Interfaces with hydrogen impurities as well as various structural disorders …


Pediatric Leukemia: Diagnosis To Treatment–A Review, Samantha C. Bernard, Ehab H. Abdelsamad, Paisley A. Johnson, Daniel L. Chapman, Madhukiran Parvathaneni May 2017

Pediatric Leukemia: Diagnosis To Treatment–A Review, Samantha C. Bernard, Ehab H. Abdelsamad, Paisley A. Johnson, Daniel L. Chapman, Madhukiran Parvathaneni

Faculty Works

Leukemia is cancer of the blood and bone marrow, it is the most common cancer found in children and is found to be more than one fourth of pediatric cancers. It causes white blood cells to become abnormal and the body to become weak. This deficiency in the immune system reduces the body's ability to fight infection or simple airborne illnesses, causing extensive treatment of common pathogens and cancer treatment. The present review covers all topics, from diagnosis to treatment of pediatric leukemia, as well as the stages of growth and physiological changes throughout the process. As leukemia has a …


Surface Chemisty Study Of Monazite Flotation In Coal Refuse Systems, Wencai Zhang Jan 2017

Surface Chemisty Study Of Monazite Flotation In Coal Refuse Systems, Wencai Zhang

Theses and Dissertations--Mining Engineering

Rare earth mineral recovery from alternative resources such as coal and coal byproducts is increasingly important to provide an opportunity for economic recovery from U.S. sources. Currently, China produces the majority of the 149,000 tons of rare earth elements used annually worldwide of which the U.S. imports 11% or around 16,000 tons. There are no significant mining operations producing rare earth elements in the U.S. However, there are many U.S. sources containing rare earth minerals such as monazite including heavy mineral sand and phosphate operations. Monazite mineral particles of a few microns have also been detected in Fire Clay seam …


Microstructural Evolution During The Homogenization Heat Treatment Of 6xxx And 7xxx Aluminum Alloys, Pikee Priya Dec 2016

Microstructural Evolution During The Homogenization Heat Treatment Of 6xxx And 7xxx Aluminum Alloys, Pikee Priya

Open Access Dissertations

Homogenization heat treatment of as-cast billets is an important step in the processing of aluminum extrusions. Microstructural evolution during homogenization involves elimination of the eutectic morphology by spheroidisation of the interdendritic phases, minimization of the microsegregation across the grains through diffusion, dissolution of the low-melting phases, which enhances the surface finish of the extrusions, and precipitation of nano-sized dispersoids (for Cr-, Zr-, Mn-, Sc-containing alloys), which inhibit grain boundary motion to prevent recrystallization. Post-homogenization cooling reprecipitates some of the phases, changing the flow stress required for subsequent extrusion. These precipitates, however, are deleterious for the mechanical properties of the alloy …


Studies Of Small Molecule Reactions Foundational To Combustion Chemistry, Francis M. Haas Oct 2016

Studies Of Small Molecule Reactions Foundational To Combustion Chemistry, Francis M. Haas

Francis (Mac) Haas

A high pressure laminar flow reactor facility (HPLFR) was designed and constructed to serve as a platform for the experimental study of the gas phase chemistry of small molecule species. This facility accommodates pressures from slightly above atmospheric to ~30 atm, temperatures from ambient to ~1000 K, and plug flow residence times on the order of 100 milliseconds to 10 seconds. Quasi-steady state NOx plateau (QSSP) experiments were conducted in the newly-constructed HPLFR to determine rate coefficients for the reaction H+O2(+M)↔HO2(+M) (H.9.M) relative to the reasonably well-known rate coefficient for H+NO2↔OH+NO. Initial experiments for M = Ar and N2, for …


Measurements By Controlled Meteorological Balloons In Coastal Areas Of Antarctica, Lars R. Hole, Alexis Pérez Bello, Tjarda J. Roberts, Paul B. Voss, Timo Vihma Oct 2016

Measurements By Controlled Meteorological Balloons In Coastal Areas Of Antarctica, Lars R. Hole, Alexis Pérez Bello, Tjarda J. Roberts, Paul B. Voss, Timo Vihma

Engineering: Faculty Publications

An experiment applying controlled meteorological (CMET) balloons near the coast of Dronning Maud Land, Antarctica, in January 2013 is described. Two balloons were airborne for 60 and 106 hours with trajectory lengths of 885.8 km and 2367.4 km, respectively. The balloons carried out multiple controlled soundings on the atmospheric pressure, temperature and humidity up to 3.3 km. Wind speed and direction were derived from the balloon drift. Observations were compared with radiosonde sounding profiles from the Halley Research Station, and applied in evaluating simulations carried out with the weather research and forecasting (WRF) mesoscale atmospheric model. The most interesting feature …