Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Engineering

Graphene

Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 459

Full-Text Articles in Entire DC Network

Encapsulated 2d Materials And The Potential For 1d Electrical Contacts, Sarah Wittenburg May 2024

Encapsulated 2d Materials And The Potential For 1d Electrical Contacts, Sarah Wittenburg

Physics Undergraduate Honors Theses

The utilization of two-dimensional materials and heterostructures, particularly graphene and hexagonal boron nitride, have garnered significant attention in the realm of nanoelectronics due to their unique properties and versatile functionalities. This study focuses on the synthesis and fabrication processes of monolayer graphene encapsulated between layers of hBN, aiming to explore the potential of these heterostructures for various electronic applications. The encapsulation of graphene within hBN layers not only enhances device performance but also shields graphene from environmental contaminants, ensuring long-term stability. Experimental techniques, including mechanical exfoliation and stamp-assisted transfer, are employed to construct three-layer stacks comprising hBN-graphene-hBN. The fabrication process …


The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough May 2024

The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough

Mechanical Engineering Undergraduate Honors Theses

Mechanical Exfoliation of Graphene is an often-overlooked portion of the fabrication of quantum devices, and to create more devices quickly, optimizing this process to generate better flakes is critical. In addition, it would be valuable to simulate test pulls quickly, to gain insight on flake quality of various materials and exfoliation conditions. Physical pulls of graphene at various temperatures, pull forces, and pull repetitions were analyzed and compared to the results of ANSYS simulations, solved for similar results. Using ANSYS’ ability to predict trends in exfoliations, flake thickness and coverage using stress and deflection analyses were investigated. Generally, both strongly …


The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough May 2024

The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough

Physics Undergraduate Honors Theses

Mechanical Exfoliation


In-Situ Shear Exfoliation Of Graphene From Graphite Polymer Nanocomposites For Lung And Heart Motion, Md Ashiqur Rahman, Md Abdur Rahman Bin Abdus Salam, Ali Ashraf Feb 2024

In-Situ Shear Exfoliation Of Graphene From Graphite Polymer Nanocomposites For Lung And Heart Motion, Md Ashiqur Rahman, Md Abdur Rahman Bin Abdus Salam, Ali Ashraf

Mechanical Engineering Faculty Publications and Presentations

Graphene-based nanocomposites have become attractive for different applications such as energy storage, sensors, biomolecule detection, biomedical, healthcare, and wearable devices due to their unique mechanical, electrical, and thermal properties. However, using commercial graphene for making nanocomposite devices can be expensive, and fabricating nanocomposites can be challenging due to impurities while transferring graphene to elastomer composites. In this study, we used a simple, inexpensive in-situ shear exfoliation method to produce graphene from graphite directly within the elastomer. As the graphene in the elastomer reached beyond its percolation or threshold, electrons hop or tunnel around from one graphene flake to another. So, …


Borophene And Graphene For Non-Enzymatic Biosensor- Ab-Initio Study, Omar A. Ismail Dec 2023

Borophene And Graphene For Non-Enzymatic Biosensor- Ab-Initio Study, Omar A. Ismail

Theses and Dissertations

Non-enzymatic glucose sensing holds promise to overcome limitations associated with glucose oxidase, such as oxygen dependence and short shelf life. This study explores the potential sensing capabilities of borophene and graphene through direct interaction with various compounds, including β-glucose, uric acid, ascorbic acid, fructose, and acetaminophen. Using Density Functional Theory (DFT), we calculated binding energies and the respective Density of States (DOS) for these adsorbates on both graphene and borophene surfaces. Preliminary results suggest that borophene might exhibit nearly twice the affinity for β-glucose compared to graphene. Moreover, the calculated Density of States reveals distinct distortions in the electronic states …


Nitrogen Radiofrequency Plasma Treatment Of Graphene, Antoine Bident, Nathalie Caillault, Florence Delange, Christine Labrugere, Guillaume Aubert, Cyril Aymonier, Etienne Durand, Alain Demourgues, Yongfeng Lu, Jean-François Silvain Oct 2023

Nitrogen Radiofrequency Plasma Treatment Of Graphene, Antoine Bident, Nathalie Caillault, Florence Delange, Christine Labrugere, Guillaume Aubert, Cyril Aymonier, Etienne Durand, Alain Demourgues, Yongfeng Lu, Jean-François Silvain

Department of Electrical and Computer Engineering: Faculty Publications

The incorporation of nitrogen (N) atoms into a graphitic network such as graphene (Gr) remains a major challenge. However, even if the insertion mechanisms are not yet fully understood, it is certain that the modification of the electrical properties of Gr is possible according to the configuration adopted. Several simulations work, notably using DFT, have shown that the incorporation of N in Gr can induce an increase in the electrical conductivity and N acts as an electron donor; this increase is linked to the amount of N, the sp2/sp3 carbon configuration, and the nature of C-N bonding. …


A Facile Graphene Conductive Polymer Paper Based Biosensor For Dopamine, Tnf-Α, And Il-6 Detection, Md Ashiqur Rahman, Ramendra Kishor Pal, Nazmul Islam, Robert Freeman, Francois Berthiaume, Aaron Mazzeo, Ali Ashraf Sep 2023

A Facile Graphene Conductive Polymer Paper Based Biosensor For Dopamine, Tnf-Α, And Il-6 Detection, Md Ashiqur Rahman, Ramendra Kishor Pal, Nazmul Islam, Robert Freeman, Francois Berthiaume, Aaron Mazzeo, Ali Ashraf

Mechanical Engineering Faculty Publications and Presentations

Paper-based biosensors are a potential paradigm of sensitivity achieved via microporous spreading/microfluidics, simplicity, and affordability. In this paper, we develop decorated paper with graphene and conductive polymer (herein referred to as graphene conductive polymer paper-based sensor or GCPPS) for sensitive detection of biomolecules. Planetary mixing resulted in uniformly dispersed graphene and conductive polymer ink, which was applied to laser-cut Whatman filter paper substrates. Scanning electron microscopy and Raman spectroscopy showed strong attachment of conductive polymer-functionalized graphene to cellulose fibers. The GCPPS detected dopamine and cytokines, such as tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6) in the ranges of 12.5–400 …


Low Loss Hybrid Plasmonic Waveguide With Graphene Multilayers, Hala Mossad I. Hassan, Nihal F. F. Areed, H. A. El-Mikati, Mohamed Farhat O. Hameed, S. S. A. Obayya Aug 2023

Low Loss Hybrid Plasmonic Waveguide With Graphene Multilayers, Hala Mossad I. Hassan, Nihal F. F. Areed, H. A. El-Mikati, Mohamed Farhat O. Hameed, S. S. A. Obayya

Mansoura Engineering Journal

A proposed design of graphene-based hybrid plasmonic waveguide is presented to improve the propagation length with a good confinement. The suggested design has multilayers of SiO2–graphene/ SiO2– GaAs – graphene/ SiO2. The full vectorial finite element method (FVFEM) is used to study the effective index (neff), propagation length (Lp), and normalized effective mode area (Aeff) of the supported hybrid plasmonic modes. In this investigation, the structure geometrical parameters are studied to achieve an ultra-small effective mode area with low propagation loss. The numerical results show that long propagation length of 138 µm at frequency of 3THz is achieved with normalized …


Chemical And Physical Interaction Mechanisms And Multifunctional Properties Of Plant Based Graphene In Carbon Fiber Epoxy Composites, Daniel W. Mulqueen Aug 2023

Chemical And Physical Interaction Mechanisms And Multifunctional Properties Of Plant Based Graphene In Carbon Fiber Epoxy Composites, Daniel W. Mulqueen

Mechanical & Aerospace Engineering Theses & Dissertations

Graphene has generated substantial interest as a filler due to its exceptional strength, flexibility, and conductivity but faces obstacles in supply and implementation. A renewable, plant-based graphene nanoparticle (pGNP) presents a more accessible and sustainable filler with the same properties as mineral graphenes. In this study, the mechanisms of graphene reinforcement in carbon fiber reinforced plastic (CFRP) were examined, along with the resulting improvements to mechanical strength, resistance to crack propagation, electrical and thermal conductivity at elevated temperatures. pGNP, produced from renewable biomass, was shown to have a graphitic structure with flakes 3-10 layers thick and a median lateral size …


Multifunctional Graphene–Polymer Nanocomposite Sensors Formed By One-Step In Situ Shear Exfoliation Of Graphite, Ali Ashraf, Elizabeth Chang, Md Ashiqur Rahman, Dipannita Ghosh, Nazmul Islam, Jennifer K. Lynch-Branzoi Jul 2023

Multifunctional Graphene–Polymer Nanocomposite Sensors Formed By One-Step In Situ Shear Exfoliation Of Graphite, Ali Ashraf, Elizabeth Chang, Md Ashiqur Rahman, Dipannita Ghosh, Nazmul Islam, Jennifer K. Lynch-Branzoi

Mechanical Engineering Faculty Publications and Presentations

Graphene nanocomposites are a promising class of advanced materials for sensing applications; yet, their commercialization is hindered due to impurity incorporation during fabrication and high costs. The aim of this work is to prepare graphene–polysulfone (G−PSU) and graphene–polyvinylidene fluoride (G−PVDF) nanocomposites that perform as multifunctional sensors and are formed using a one-step, in situ exfoliation process whereby graphite is exfoliated into graphene nanoflakes (GNFs) directly within the polymer. This low-cost method creates a nanocomposite while avoiding impurity exposure since the raw materials used in the in situ shear exfoliation process are graphite and polymers. The morphology, structure, thermal properties, and …


Experimental Investigation Of Various Energy-Absorbing Layer Materials And Sodium Alginate Viscosities On The Jet Formation In Laser-Induced-Forward-Transfer (Lift) Bioprinting, Shuqi Zhou, Chaoran Dou, Jianzhi Li, Qiqi Zhang, Qilin Dai, Ben Xu May 2023

Experimental Investigation Of Various Energy-Absorbing Layer Materials And Sodium Alginate Viscosities On The Jet Formation In Laser-Induced-Forward-Transfer (Lift) Bioprinting, Shuqi Zhou, Chaoran Dou, Jianzhi Li, Qiqi Zhang, Qilin Dai, Ben Xu

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Laser-induced-forward-transfer (LIFT) bioprinting technology has been viewed as a regenerative medicine technology because of its high printing quality and good cell viability. To stabilize the jet to achieve high-quality printing, an energy-absorbing layer (EAL) can be introduced. In this study, three materials (graphene, gelatin, and gold) were utilized as the EAL. The effect of each EAL on the jet generation process was investigated. Besides, the effect of graphene EAL thickness was addressed for various experimental conditions. The jet generation process using sodium alginate solutions with different concentrations (1 and 2 wt. %) was also discussed to investigate the effect of …


Structure-Property-Processing Analysis Of Graphene Bioscaffolds For Viability And Differentiation Of C2c12 Cells, Lynn Karriem May 2023

Structure-Property-Processing Analysis Of Graphene Bioscaffolds For Viability And Differentiation Of C2c12 Cells, Lynn Karriem

Boise State University Theses and Dissertations

We investigated the structure – property – processing correlation of graphene bioscaffolds produced using three different methods. Bioscaffolds were prepared by chemical vapor deposition (CVD), sublimation of Silicon Carbide (SiC), and printed solvent assisted exfoliated graphene ink. To gain insight into the roughness and topography of graphene, AFM was performed on each bioscaffold. Raman spectroscopy mapping demonstrated differences in the I2D/IG ratio for each scaffold. Young’s modulus was determined by nanoindentation and indicated that epitaxial graphene had the highest average stiffness, followed by CVD, with printed graphene demonstrating the lowest average stiffness. To investigate the biocompatibility of …


Analysis And Application Of Finite Element And High-Order Finite Difference Methods For Maxwell’S Equations In Complex Media, Li Zhu May 2023

Analysis And Application Of Finite Element And High-Order Finite Difference Methods For Maxwell’S Equations In Complex Media, Li Zhu

UNLV Theses, Dissertations, Professional Papers, and Capstones

The Perfectly Matched Layer (PML) technique is an effective tool introduced by B´erenger [13] to reduce the unbounded wave propagation problem to a bounded domain problem. This dissertation focuses on two different PML models and their applications to wave propagation problems with Maxwell’s equation in complex media. We investigate these models using two popular numerical methods: the Finite Difference Method (FDM) in Chapters 2 and 3, and the Finite Element Method (FEM) in Chapters 4 and 5.In Chapter 2, we focus on analyzing the stability of a PML developed by B’ecache et al. [10] for simulating wave propagation in the …


Graphene Twistronics: Tuning The Absorption Spectrum And Achieving Metamaterial Properties, Ammar Armghan, Meshari Alsharari, Khaled Aliqab, Osamah Alsalman, Juveriya Parmar, Shobhit K. Patel Mar 2023

Graphene Twistronics: Tuning The Absorption Spectrum And Achieving Metamaterial Properties, Ammar Armghan, Meshari Alsharari, Khaled Aliqab, Osamah Alsalman, Juveriya Parmar, Shobhit K. Patel

Department of Mechanical and Materials Engineering: Faculty Publications

Graphene twistronics using multilayer graphene is presented in such a way that it provides a metamaterial effect. This manuscript also analyzes the prediction of behavior using machine learning. The metamaterial effect is achieved by twisting the graphene layers. Graphene twistronics is a new concept for changing the electrical and optical properties of bilayer graphene by applying a small angle twist between the layers. The angle twists of 5o, 10o, and 15o are analyzed for the proposed graphene twistronics design. Tuning in the absorption spectrum is achieved by applying small twists to the angles of the …


Non-Destructive Infrared Thermographic Curing Analysis Of Polymer Composites, Md Ashiqur Rahman, Javier Becerril, Dipannita Ghosh, Nazmul Islam, Ali Ashraf Feb 2023

Non-Destructive Infrared Thermographic Curing Analysis Of Polymer Composites, Md Ashiqur Rahman, Javier Becerril, Dipannita Ghosh, Nazmul Islam, Ali Ashraf

Mechanical Engineering Faculty Publications and Presentations

Infrared (IR) thermography is a non-contact method of measuring temperature that analyzes the infrared radiation emitted by an object. Properties of polymer composites are heavily influenced by the filler material, filler size, and filler dispersion, and thus thermographic analysis can be a useful tool to determine the curing and filler dispersion. In this study, we investigated the curing mechanisms of polymer composites at the microscale by capturing real-time temperature using an IR Thermal Camera. Silicone polymers with fillers of Graphene, Graphite powder, Graphite flake, and Molybdenum disulfide (MoS2) were subsequently poured into a customized 3D printed mold for …


Using Nanomaterials As Excellent Immobilisation Layer For Biosensor Design, Azeez Olayiwola Idris, Seyi Philemon Akanji, Benjamin O. Orimolade, Foluke Omobola Grace Olorundare, Shohreh Azizi, Bhekie Mamba, Malik Maaza Feb 2023

Using Nanomaterials As Excellent Immobilisation Layer For Biosensor Design, Azeez Olayiwola Idris, Seyi Philemon Akanji, Benjamin O. Orimolade, Foluke Omobola Grace Olorundare, Shohreh Azizi, Bhekie Mamba, Malik Maaza

Research outputs 2022 to 2026

The endless development in nanotechnology has introduced new vitality in device fabrication including biosensor design for biomedical applications. With outstanding features like suitable biocompatibility, good electrical and thermal conductivity, wide surface area and catalytic activity, nanomaterials have been considered excellent and promising immobilisation candidates for the development of high-impact biosensors after they emerged. Owing to these reasons, the present review deals with the efficient use of nanomaterials as immobilisation candidates for biosensor fabrication. These include the implementation of carbon nanomaterials—graphene and its derivatives, carbon nanotubes, carbon nanoparticles, carbon nanodots—and MXenes, likewise their synergistic impact when merged with metal oxide nanomaterials. …


A Molecular Dynamics Study Of Water Confined In Between Two Graphene Sheets Under Compression, Ming-Lang Tseng, Ayomide Adesiyan, Abdelaziz Gassoumi, Nima E. Gorji Jan 2023

A Molecular Dynamics Study Of Water Confined In Between Two Graphene Sheets Under Compression, Ming-Lang Tseng, Ayomide Adesiyan, Abdelaziz Gassoumi, Nima E. Gorji

Articles

Several studies have demonstrated interest in creating surfaces with improved water interaction and adaptive properties because the behavior of water confined at the nanoscale plays a significant role in the synthesis of materials for technological applications. Remarkably, confinement at the nanoscale significantly modifies the characteristics of water. We determine the phase diagram of water contained by graphene stack sheets in slab form, at T=300 K, and for a constant pressure using molecular dynamics simulations. We discover that, as shown in the simulation, water can exist in both the liquid and vapor phases depending on the confining geometry and compressibility ratio. …


Synthesis Of Quasi-Freestanding Graphene Films Using Radical Species Formed In Cold Plasmas, Michael A. Mathews Jr. Jan 2023

Synthesis Of Quasi-Freestanding Graphene Films Using Radical Species Formed In Cold Plasmas, Michael A. Mathews Jr.

Graduate Theses, Dissertations, and Problem Reports

For over a decade, the Stinespring laboratory has investigated scalable, plasma assisted synthesis (PAS) methods for the growth of graphene films on silicon carbide (SiC). These typically utilized CF4-based inductively coupled plasma (ICP) with reactive ion etching (RIE) to selectively etch silicon from the SiC lattice. This yielded a halogenated carbon-rich surface layer which was then annealed to produce the graphene layers. The thickness of the films was controlled by the plasma parameters, and overall, the process was readily scalable to the diameter of the SiC wafer.

The PAS process reproducibly yielded two- to three-layer thick graphene films …


Bandgap Engineering Of 2d Materials And Its Electric And Optical Properties, Kumar Vishal Jan 2023

Bandgap Engineering Of 2d Materials And Its Electric And Optical Properties, Kumar Vishal

Browse all Theses and Dissertations

Since their invention in 1958, Integrated Circuits (ICs) have become increasingly more complex, sophisticated, and useful. As a result, they have worked their way into every aspect of our lives, for example: personal electronic devices, wearable electronics, biomedical sensors, autonomous driving cars, military and defense applications, and artificial intelligence, to name some areas of applications. These examples represent both collectively, and sometimes individually, multi-trillion-dollar markets. However, further development of ICs has been predicted to encounter a performance bottleneck as the mainstream silicon industry, approaches its physical limits. The state-of-the-art of today’s ICs technology will be soon below 3nm. At such …


Sars-Cov-2 Detecting Rapid Metasurface-Based Sensor, Shobhit K. Patel, Jaymit Surve, Juveriya Parmar, Khaled Aliqab, Meshari Alsharari, Ammar Armghan Dec 2022

Sars-Cov-2 Detecting Rapid Metasurface-Based Sensor, Shobhit K. Patel, Jaymit Surve, Juveriya Parmar, Khaled Aliqab, Meshari Alsharari, Ammar Armghan

Department of Mechanical and Materials Engineering: Faculty Publications

We have proposed a novel approach to detect COVID-19 by detecting the ethyl butanoate which high volume ratio is present in the exhaled breath of a COVID-19 infected person. We have employed a refractive index sensor (RIS) with the help of a metasurface-based slotted T-shape perfect absorber that can detect ethyl butanoate present in exhaled breath of COVID-19 infected person with high sensitivity and in-process SARS-CoV-2. The optimized structure of the sensor is obtained by varying several structure parameters including structure length and thickness, slotted T-shape resonator length, width, and thickness. Sensor’s performance is evaluated based on numerous factors comprising …


Effects Of Polymer Side-Group Size On Interfacial Mechanics Of Graphene-Polymer Nanocomposites, Grace Brokaw Dec 2022

Effects Of Polymer Side-Group Size On Interfacial Mechanics Of Graphene-Polymer Nanocomposites, Grace Brokaw

All Theses

Graphene-reinforced polymer nanocomposites possess excellent mechanical, thermal, and electrical properties, which make them promising candidates for various applications. Favorable interfacial interactions and mechanics between graphene sheets and polymer matrices are often essential to achieve superior mechanical properties. Nevertheless, it remains largely elusive how molecular features of polymer systems, particularly the side-group size of polymer chains, affect the interfacial mechanics between graphene sheets and polymer matrices, primarily due to challenges in well controlling these features in experiments. On the other hand, exploring their roles in the mechanical properties of graphene-polymer nanocomposites is very expensive to study with all-atomistic molecular dynamics (MD) …


Towards The Electronic Response Of Carbon-Based Van Der Waals Heterostructures In A Diamond Anvil Cell, George Thomas Foskaris Dec 2022

Towards The Electronic Response Of Carbon-Based Van Der Waals Heterostructures In A Diamond Anvil Cell, George Thomas Foskaris

UNLV Theses, Dissertations, Professional Papers, and Capstones

The nanoscale regime of materials has been at the forefront of research and interest in condensed matter physics for many years. In a merger of the fields of two-dimensional (2D) materials and high pressure physics, we present an investigation of the electronic response of carbon-based, van der Waals (vdW) heterostructures in a diamond anvil cell (DAC). Combining these fields presents us with the ability to study the characteristics of such systems both optically, and through electrical transport. Properties such as conductance, band structure, and layer number are considered. The samples in this study are assembled using exfoliation and stacking techniques …


Effects Of Graphene In High-Density Polyethylene Microfibers, Ashish Lal Sivadas Anilal Dec 2022

Effects Of Graphene In High-Density Polyethylene Microfibers, Ashish Lal Sivadas Anilal

Material Science and Engineering Theses

High-Density Polyethylene uniquely can induce banded spherulites as it is crystallized from its melt. We studied the effects of graphene in the crystallography of banded HDPE by examining parameters such as the extent of twisting, spherulitic growth, and nucleation density. The application of graphene as a multifunctional filler in polymer matrices is a great topic of interest because graphene at low concentrations can bring many improvements in mechanical, electrical, and thermal properties. We synthesized graphene oxide by chemical oxidation of graphite and further studied its effects in the twisted crystallography of HDPE. Three batches of fibers were extruded: two batches …


Quantification Of Flows Emerging From Small Pores In Plane Walls, Matia Peter Edwards Nov 2022

Quantification Of Flows Emerging From Small Pores In Plane Walls, Matia Peter Edwards

Electronic Thesis and Dissertation Repository

Current membrane separation processes are limited in high production and high purity settings due to a trade-off between selectivity and permeance. Methods of creating nanoscale geometries in 2D materials are emerging and present an opportunity for fast, size selective mass transport that can be tailored to a wide array of applications. This thesis develops a method for quantifying flow through small pores in plane walls based on the behaviour of a solute dispersed in a downstream reservoir. This method is validated for a range of micropore diameters, for which flow rates can be calculated with confidence, and is shown to …


Fabrication And Non-Covalent Functionalization And Characterization Of Graphene-Based Devices On Novel Substrate Cadmium Trithiophosphate (Iv) — Cdps, Abayomi Omotola Omolewu Aug 2022

Fabrication And Non-Covalent Functionalization And Characterization Of Graphene-Based Devices On Novel Substrate Cadmium Trithiophosphate (Iv) — Cdps, Abayomi Omotola Omolewu

Graduate Theses and Dissertations

With graphene at the center of several application areas such as sensing, circuits, high-frequency devices for communication systems, etc., it is crucial to understand how the intrinsic properties of devices made from graphene and other materials like platinum and palladium nanoparticles affect the performance of such devices for the specific application area. Many graphene-based devices for different application areas have focused mainly on the material composition of the graphene-based devices and how it affects performance parameters for the specific application. However, it would be insightful to understand how the intrinsic electrical properties of the graphene devices for different applications affect …


Nonreciprocal Electromagnetics Of Layered Media, Samaneh Pakniyat Aug 2022

Nonreciprocal Electromagnetics Of Layered Media, Samaneh Pakniyat

Theses and Dissertations

In plasmonic systems, interaction of light and surface plasmons leads to excitation of surface plasmon polaritons (SPPs) carrying energy on the surface. In an isotropic plasmonic system, the SPPs optical response is reciprocal, which means that the forward and backward surface waves have identical propagation behaviors and SPPs refract when they encounter a discontinuity on the surface. In order to excite SPPs resilient to the surface disorders, the system reciprocity needs to be broken by different techniques such as applying an external magnetic bias. In this case, the plasmonic system becomes a gyrotropic medium. Recently, it has been shown that …


Design Tunneling Transistor And Schottky Junction Solar Cell Using Van Der Waals Semiconductor Heterostructure, Md Azmot Ullah Khan Jul 2022

Design Tunneling Transistor And Schottky Junction Solar Cell Using Van Der Waals Semiconductor Heterostructure, Md Azmot Ullah Khan

LSU Doctoral Dissertations

Transition metal di-chalcogenide (TMDC) materials, being semiconductor in nature, offer Two-dimensional (2D) materials such as graphene and molybdenum disulfide (MoS2) possess unique and unusual properties that are particularly applicable to nanoelectronics and photovoltaic devices. In this dissertation, four different projects have been done that encompass the implementation of these materials to improve the performance of future transistors and Schottky junction solar cells. In chapter 2, an analytical current transport model of a dual gate tunnel field-effect transistor (TFET) is developed by utilizing the principle of band-to-band tunneling (BTBT) and MoS2 as the channel material. Later, using this …


Designing & Building A Microwave Plasma Reactor For Graphene Synthesis, Aviv Zohman, Jerry Larue May 2022

Designing & Building A Microwave Plasma Reactor For Graphene Synthesis, Aviv Zohman, Jerry Larue

Student Scholar Symposium Abstracts and Posters

Graphene’s remarkable electrical, optical, and chemical properties make it a promising successor to indium tin oxide for applications in flexible, transparent electronics. However, efforts to manufacture graphene have been hindered by inefficient synthesis and transfer methods. Chemical vapor deposition (CVD) is commonly used to produce graphene. CVD starts with a blank surface onto which a chemical vapor is deposited to create a single graphene layer. CVD requires extreme temperatures, so only substrates with high melting points are applicable, like metals. This excludes insulative substrates such as polymers which are essential to transparent and flexible devices. Therefore, a subsequent process transfers …


Design, Fabrication, And Characterization Of An Array Of Graphene Based Variable Capacitors, Millicent Nkirote Gikunda May 2022

Design, Fabrication, And Characterization Of An Array Of Graphene Based Variable Capacitors, Millicent Nkirote Gikunda

Graduate Theses and Dissertations

Since it was first isolated and characterized in 2004, graphene has shown the potential for a technological revolution. This is due to its amazing physical properties such as high electrical conductivity, high thermal conductivity, and extreme flexibility. Freestanding graphene membranes naturally possesses an intrinsic rippled structure, and these ripples are in constant random motion even room temperatures. Occasionally, the ripples undergo spontaneous buckling (change of curvature from concave to convex and vice versa) and the potential energy associated with this is a double well potential. This movement of graphene is a potential source of vibrational energy.

In this dissertation, we …


Near-Field Thermal Radiation In Graphene-Based Systems, Hua Lin May 2022

Near-Field Thermal Radiation In Graphene-Based Systems, Hua Lin

Honors College

Radiative heat transfer between two media separated by a sub-wavelength distance (the dominant wavelength of thermal radiation at room temperature is around 10 m.) is referred to as near-field radiative heat transfer (NFRHT). Graphene was found to have one of the greatest levels of NFRHT [1]. Additionally, NFRHT of graphene can be modulated externally via application of a bias voltage to the material [1][2], thereby altering its Fermi energy level. As such, graphene is an ideal candidate for several applications such as NFRHT for thermal switching, nano-gap thermophotovoltaic waste heat recovery, and thermal rectification. Modulation ratios as large as 77.7274 …