Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

Theses/Dissertations

Electrochemistry

Institution
Publication Year
Publication

Articles 31 - 60 of 118

Full-Text Articles in Entire DC Network

Developing Methods For Diversifying Molecular Scaffolds Directly On A Microelectrode Array, Nai-Hua Yeh Jan 2021

Developing Methods For Diversifying Molecular Scaffolds Directly On A Microelectrode Array, Nai-Hua Yeh

Arts & Sciences Electronic Theses and Dissertations

Microelectrode arrays contain collections of spatially isolated electrodes that can be individually addressed. Thus, the arrays have the potential to support synthesis of molecular libraries if unique members of the library can be located next to unique electrodes in the array. The result would be an intriguing platform for screening the molecules in the library against biological receptors in order to identify high-affinity ligands for those targets, especially since the arrays themselves can be directly used in the signaling studies. To expand the capabilities of the arrays, the goal of this thesis is to develop the new array chemistry needed …


Enhanced Electrochemical And Light-Driven Co2 Reduction By Incoporating Pendant Functionality In The Second-Coordination Sphere Of Molecular Catalysts, Sayontani Sinha Roy Jan 2021

Enhanced Electrochemical And Light-Driven Co2 Reduction By Incoporating Pendant Functionality In The Second-Coordination Sphere Of Molecular Catalysts, Sayontani Sinha Roy

Electronic Theses and Dissertations

With the increase in global population and rapid industrialization, a gigantic amount of greenhouse gases is being released into the atmosphere each year. The catastrophic effect of these accumulated greenhouse gases is driving global climate change and adversely impacting our ecosystem. Popularizing the traditional renewable energy sources (such as solar and wind energy) can mitigate the problem by cutting down anthropogenic CO2 emissions, which is the major contributor to this global problem. However, the intermittent nature of these energy sources is problematic to reliably power society throughout the year. Therefore, converting CO2 to various value-added chemicals with the aid of …


Novel Applications Of Mass Spectrometry For Quantitation And Reaction Mechanism Elucidation, Pengyi Zhao Dec 2020

Novel Applications Of Mass Spectrometry For Quantitation And Reaction Mechanism Elucidation, Pengyi Zhao

Dissertations

Mass spectrometry (MS) has been growing as one of the most widely used tools in the field of analytical chemistry. Various applications have been developed to harness the high sensitivity and specificity of mass spectrometric analysis. In this dissertation, two major challenges are addressed. By developing mass spectrometric-based methods, absolute quantitation of proteins/peptides have been achieved. Elucidation of various reaction mechanisms are also enabled. These are the focuses of this dissertation.

In Chapters 2 to 4, a novel quantitation method is developed, titled as coulometric mass spectrometry (CMS). The strength of this method is that no reference standard or isotope-labeled …


The Utilization Of Metal-Ligand Cooperativity For Electrocatalytic Reduction And Catalytic Hydration., Steven Cronin Dec 2020

The Utilization Of Metal-Ligand Cooperativity For Electrocatalytic Reduction And Catalytic Hydration., Steven Cronin

Electronic Theses and Dissertations

Small molecules are building blocks for developing larger materials. These small molecules could be extremely small, such as hydrogen, or larger such as a nitrile, but their impact on the global economy is massive. This dissertation describes a catalyst for three reactions involving small molecules; 1) the hydrogen evolution reaction, 2) the carbon dioxide reduction reaction, 3) nitrile hydration. The catalyst Zn(DMTH) (DMTH = diacetyl-2-(4-methyl-3-thiosemicarbazonate)-3-(2-pyridinehydrazonato)) use “metal-ligand cooperativity” between the Lewis acid Zn(II) metal ion and an uncoordinated Lewis base nitrogen in the ligand framework to activate substrates. The complex has been analyzed via NMR, UV/Vis, single crystal X-ray crystallography, …


Synthesis Of Stable Organic Radical Homo- And Co-Polymers And Their Applications In Solid-State Devices, Michael Anghel Oct 2020

Synthesis Of Stable Organic Radical Homo- And Co-Polymers And Their Applications In Solid-State Devices, Michael Anghel

Electronic Thesis and Dissertation Repository

This thesis outlines the synthesis and characterization of a stable organic radical homopolymer incorporating nitronyl nitroxide radicals, as well as the synthesis and characterization of random and block co-polymers incorporating nitronyl nitroxide and 6-oxoverdazyl radicals.

The nitronyl nitroxide homopolymer was synthesized using ring-opening metathesis polymerization (ROMP), yielding polymers with controlled molecular weights and narrow molecular weight distributions. Studies of polymer growth as a function of time and monomer:catalyst ratio revealed the ROMP to be well-behaved. Spectroscopic analysis of the polymer showed that the radicals possessed high radical content, indicating that they are tolerated by ROMP. Conductivity studies of thin-films made …


Galvanic Corrosion Of Carbon Steel-Stainless Steel Welds, Mi Li Aug 2020

Galvanic Corrosion Of Carbon Steel-Stainless Steel Welds, Mi Li

Electronic Thesis and Dissertation Repository

A water leak in one of the Canada Deuterium Uranium (CANDU) nuclear reactors could lead to galvanic corrosion between the materials of its supporting structures: carbon steel (CS) and stainless steel (SS). This project investigates the effects of physical and chemical solution parameters on the corrosion of galvanically coupled dissimilar CS-SS welds, with the aim of developing a corrosion dynamics model that can be used to assess the long-term integrity of the CANDU reactor structural materials with confidence. The studied parameters were solution pH, temperature, the presence or absence of γ-radiation and the cathode:anode surface area ratio. Multiple electrochemical techniques …


Electrostatic Denaturation Of Dna-Cisplatin Adducts, Eddie Madrigal Aug 2020

Electrostatic Denaturation Of Dna-Cisplatin Adducts, Eddie Madrigal

Master's Theses

In this thesis, electrochemical approaches are used to determine the properties of deoxyribonucleic acid (DNA) by electrostatic denaturation. The electrochemical routine involves an application of a destabilization potential, an equilibration potential, and a square wave voltammogram (SWV) to monitor the extent of melting. Our method uses a monolayer consisting of thiol modified DNA and mercaptohexanol on a gold electrode. These electrodes are then incubated in a complementary sequence tagged with methylene blue. By using our electrostatic denaturation technique, different parameters are explored, such as surface densities, surface coverages, and ionic strengths. As proof of concept, these techniques were applied toward …


Mxenes As Flow Electrodes For Capacitive Deionization Of Wastewater, Naqsh E. Mansoor Aug 2020

Mxenes As Flow Electrodes For Capacitive Deionization Of Wastewater, Naqsh E. Mansoor

Boise State University Theses and Dissertations

The energy-water nexus poses an integrated research challenge, while opening up an opportunity space for the development of energy efficient technologies for water remediation. Capacitive Deionization (CDI) is an upcoming reclamation technology that uses a small applied voltage applied across electrodes to electrophoretically remove dissolved ionic impurities from wastewater streams. Similar to a supercapacitor, the ions are stored in the electric double layer of the electrodes. Reversing the polarity of applied voltage enables recovery of the removed ionic impurities, allowing for recycling and reuse. Simultaneous materials recovery and water reclamation makes CDI energy efficient and resource conservative, with potential to …


Elucidation Of Radical Cation Trapping Chemistry: Using Electrochemical And Photochemical Techniques To Qualitatively Assess The Kinetics Behind Anodic Oxidative Cyclizations, Luisalberto Gonzalez May 2020

Elucidation Of Radical Cation Trapping Chemistry: Using Electrochemical And Photochemical Techniques To Qualitatively Assess The Kinetics Behind Anodic Oxidative Cyclizations, Luisalberto Gonzalez

Arts & Sciences Electronic Theses and Dissertations

While the field of organic chemistry has grown throughout the decades, its primary concern has always been on the generation, conversion, and study of molecular structures. Within that philosophy, the development of new reactions affords chemists the ability to overcome previous synthetic barriers or develop more elegant and simple synthetic routes to difficult-to-construct molecules. Within that realm, electrochemistry is seeing increased attention due its ability to generate highly reactive intermediates, recycle chemical reagents, and reverse the polarity of known functional groups. One example of such an application is the use of electrochemistry to form radical cations. While radical cations have …


Electrochemical Reduction Of Carbon Dioxide And Carbon Monoxide For The Production Of Green Fuels And Chemicals., Jacob M. Strain May 2020

Electrochemical Reduction Of Carbon Dioxide And Carbon Monoxide For The Production Of Green Fuels And Chemicals., Jacob M. Strain

Electronic Theses and Dissertations

It has become apparent that closing the carbon cycle on this planet in order to mitigate disastrous consequences of runaway global warming has become one of the most pressing issues of our civilization. One of the ways we need to accomplish this goal is by finding news methods to generate fuels that will be carbon neutral. Renewable fuels and green chemicals will be a major component of closing the carbon cycle and restoring our planet’s ecosystem into a sense of balance. A method that can help achieve this goal is the reduction of CO2. If CO2 can …


The Influence Of Radiolytically Produced Nitric Acid On The Corrosion Resistance Of Copper-Coated Used Nuclear Fuel Containers, Joseph P. Turnbull Apr 2020

The Influence Of Radiolytically Produced Nitric Acid On The Corrosion Resistance Of Copper-Coated Used Nuclear Fuel Containers, Joseph P. Turnbull

Electronic Thesis and Dissertation Repository

In Canada, the proposed disposal method for high level nuclear waste involves sealing the waste in steel containers with a 3 mm outer copper coating and burying it in a deep geologic repository. However, the thickness of the container is significantly reduced making a reassessment of the influence of γ-radiation, emitted by the waste form, on container corrosion a potential licensing requirement. Under humid aerated conditions, the formation of nitric acid is expected, potentially resulting in the formation of droplets or wetted layers on the container surface. Currently available literature on the corrosion of copper in nitric acid does not …


Multi-Component Material For Solar Energy Conversion And Fundamentals Of Lead Acid Batteries, Crystal Ferels Jan 2020

Multi-Component Material For Solar Energy Conversion And Fundamentals Of Lead Acid Batteries, Crystal Ferels

Graduate Research Theses & Dissertations

Synthesis of complex inorganic materials is desirable because their complex composition allows more degrees of freedom and tunability, whose properties differ from their parent components. As an expansion on this concept, we synthesized a quinary compound Ce3FeWS3O6, using a molten flux method and a solvothermal method. The compound crystallizes into a hexagonal crystal system with space group P63/m. Its electric partition shows an anion with the form [(Ce3+)3W6+(S2-)3(O2-)6]3- forcing the transition metal Fe3+ state and leaving no conduction electrons, making the material a semiconductor. This compound is the right candidate as photoelectric material capable of absorbing photons from the solar …


Electrolytic Oxidative Coupling Of Alcohols With Aldehydes To Form Esters, Katherine L. Verboom Jan 2020

Electrolytic Oxidative Coupling Of Alcohols With Aldehydes To Form Esters, Katherine L. Verboom

Honors College Theses

There are copious amounts of naturally occurring and synthetic esters known that have a wide range of applications in industry to produce fine chemicals. Traditional methods of ester synthesis involve a reaction between a carboxylic acid and an alcohol in the presence of a Bronsted acid catalyst. The primary objective of this research project was to carry out the ester synthesis using the electrochemical coupling of aldehydes with alcohols instead of with a Bronsted acid catalyst because the electrochemical coupling would be an all-around better alternative of ester synthesis than the traditional method of using the catalyst. Electrochemistry has long …


Investigation Of Underpotential Deposition Of Copper At Heated Gold Loop Screen-Printed Electrodes In A Variety Of Water Samples, Eun-Ju Lee Jan 2020

Investigation Of Underpotential Deposition Of Copper At Heated Gold Loop Screen-Printed Electrodes In A Variety Of Water Samples, Eun-Ju Lee

Legacy Theses & Dissertations (2009 - 2024)

To study the underpotential deposition (UPD) of copper, three different types of water samples (TraceSelect® Ultra-pure water, Indian pond water at University at Albany and tap water) are used at a heated gold loop screen-printed electrode (GLE), which is a new type of heated working electrode for voltammetry measurements that is able to directly detect the copper content in the water samples. The anodic stripping analysis of copper is performed with these gold loop electrodes at room temperature of 25 °C and electrode temperature of 80 °C at two different deposition potentials, -0.20 V and +0.10 V. Furthermore, the concentration …


Transition Metal Chalcogenide Hybrid Systems As Catalysts For Energy Conversion And Biosensing, Siddesh Umapathi Jan 2020

Transition Metal Chalcogenide Hybrid Systems As Catalysts For Energy Conversion And Biosensing, Siddesh Umapathi

Doctoral Dissertations

"Generation of hydrogen and oxygen through catalyst-aided water splitting which has immense applications in metal air batteries, PEM fuel cells and solar to fuel energy production, has been one of the critical topics in recent times. The state of art oxygen evolution reaction (OER), oxygen reduction reaction (ORR), hydrogen evolution reaction (HER) catalysts are mostly comprised of precious metals. The current challenge lies in replacing these precious metal-based catalysts with non-precious earth-abundant materials without compromising catalytic efficiency.

This research explores mixed metal selenides containing Fe-Ni, Fe-Co and RhSe which were hydrothermally synthesized and/or electrodeposited and tested for OER and ORR …


Electrochemical Investigation Into The External Failure Modes Of Oil And Gas Pipelines, Maxwell Goldman Dec 2019

Electrochemical Investigation Into The External Failure Modes Of Oil And Gas Pipelines, Maxwell Goldman

Electronic Thesis and Dissertation Repository

Carbon steel is the material of choice for transmission pipelines for the oil and gas industry across the globe due to its mechanical properties, and low cost. Carbon steel is only resistffxidant, and the types of anions present in the exposure environment. Transmission pipelines are coated with non-conductive polymeric coatings and can be protected by cathodic protection in order to mitigate exterior corrosion. The primary goals of this thesis were to determine the role of anions, cathodic charging with hydrogen, and steel microstructure on different failure modes of carbon steel.

The corrosion mechanism of carbon steel in the presence of …


An Electrochemical Instrument For The Analysis Of Heavy Metals In Water Via Anodic Stripping Coulometry For Applications In Remote Sensing., Kelsey Lynn Kaht Dec 2019

An Electrochemical Instrument For The Analysis Of Heavy Metals In Water Via Anodic Stripping Coulometry For Applications In Remote Sensing., Kelsey Lynn Kaht

Electronic Theses and Dissertations

From the high levels of arsenic in groundwater in Bangladesh to the lead contamination of drinking water in Flint, Michigan, there are incidents across the globe that highlight the need for a reliable instrument capable of monitoring heavy metals remotely and continuously in a variety of geographical locations. Typical instrumentation for water analysis, such as ICP and AAS, must be housed in a central lab and relies on an operator traveling to the collection site, obtaining a sample, and transporting it back to the lab. This analysis provides a snapshot of the water quality that is limited to the specific …


Modification And Optimization Of Conducting Polymer-Modified, Redox-Magnetohydrodynamics (R-Mhd) Pumping For Enhanced And Sustained Microfluidics Applications, Md Foysal Zahid Khan Aug 2019

Modification And Optimization Of Conducting Polymer-Modified, Redox-Magnetohydrodynamics (R-Mhd) Pumping For Enhanced And Sustained Microfluidics Applications, Md Foysal Zahid Khan

Graduate Theses and Dissertations

In this work, a novel microfluidic pumping approach, redox-magnetohydrodynamics (R-MHD) has improved by materials and device optimization to use in lab-on-a-chip applications. In R-MHD, magnetic flux (B) and ionic current density (j) interacts to generate body force (FB) in between active electrodes, according to the equation FB = j×B. This unique fluid pumping approach is scalable, tunable, generates flat flow profile, and does not require any channels or valves. Pumping performance, such as speed scales with the ionic current density (j) and duration depends on the total charge (Q). The ionic current density (j) results from the conversion of electronic …


Synthesis, Characterization, And Applications Of Group 13 And 14 Complexes Of Chelating Formazanate Ligands, Ryan R. Maar Jul 2019

Synthesis, Characterization, And Applications Of Group 13 And 14 Complexes Of Chelating Formazanate Ligands, Ryan R. Maar

Electronic Thesis and Dissertation Repository

This thesis describes the synthesis and characterization of group 13 (boron and aluminum) and group 14 (silicon, germanium, and tin) complexes supported by chelating formazanate [R1-N-N=C(R3)-N=N-R5] ligands. The resulting complexes are redox-active and often luminescent. Chapters two to four describe the synthesis and characterization of boron formazanate adducts. The work in these chapters demonstrates that through structural modification of the formazanate ligand, solid-state- and NIR photoluminescence can be achieved. Furthermore, the formation of an oxoborane (B=O) afforded a highly photoluminescent formazanate adduct due to the structural rigidity imposed by the B=O bond. These …


Synthesis And Characterization Of A Homogeneous Cobalt Catalyst For The Hydrogenation Of Acetone To Isopropanol, Joselyn G. Molina May 2019

Synthesis And Characterization Of A Homogeneous Cobalt Catalyst For The Hydrogenation Of Acetone To Isopropanol, Joselyn G. Molina

Honors Projects

To lessen environmentalstrain and decrease dependency on noble metals for catalysis, first-row metals are continuously being explored as alternative catalysts for reactions of interest, particularly those that close the carbon cycle or promote fuel production. Recently, homogeneous cobalt catalysts have been shown to be viable options for effective hydrogenation of C-O double bonds, with cobalt-triphos being of particular interest. Here, we report the characterization of synthesized a cobalt-triphos complex by nuclear magnetic resonance spectroscopy and optical spectroscopy. Analysis of the electrochemistry of the cobalt-triphos complex suggests promising electrocatalytic capability for the hydrogenation of acetone to produce isopropanol.


Surface Immobilization Of Terpyridine Compounds, Elizabeth Hallett May 2019

Surface Immobilization Of Terpyridine Compounds, Elizabeth Hallett

Chemical Engineering Undergraduate Honors Theses

The deoxydehydration (DODH) of polyols to alkenes is a promising method of producing high-value chemical feedstocks from biomass-derived materials. Current catalytic systems for DODH require the use of costly reducing agents that generate stoichiometric amounts of chemical waste. Immobilizing catalysts on electrode surfaces using chemical linking groups eliminates the need for sacrificial reductants. In this work, glassy carbon electrodes were modified with 4’-(3,4-dihydroxyphenyl)-2,2’:6’,2’’-terpyridine to investigate o-benzoquinone as a potential linking group for DODH, and possibly for other reactions. Previous studies involving electrodes modified with quinone-containing compounds have primarily been focused on catalyzing the oxidation of NADH; the nature or …


Anion Pool Directed Electroorganic Synthesis, D.M.M. Madushanka Mevan Dissanayake Apr 2019

Anion Pool Directed Electroorganic Synthesis, D.M.M. Madushanka Mevan Dissanayake

Theses and Dissertations

The “Anion pool” approach introduces a greener approach for derivatization of pharmaceutically important molecules by amalgamating both electrochemistry and organic synthesis. This is a base and metal free procedure carried out in organic solvents recommended for pharmaceutical preparations. The anion pool procedure generates reactive nitrogen nucleophiles in situ via electrochemical reduction of heteroaromatic substrates. The adoption of such a methodology prevents generation of waste from bases used for deprotonation. Hydrogen is the main by-product of generation of anion pool, which, if produced at a large enough scale could be used as a renewable fuel. These attributes comply with the principles …


Corrosion Studies On Lightweight Automotive Alloys: The Effect Of Microstructure And Fundamental Mechanisms, Wilfred J. Binns Mar 2019

Corrosion Studies On Lightweight Automotive Alloys: The Effect Of Microstructure And Fundamental Mechanisms, Wilfred J. Binns

Electronic Thesis and Dissertation Repository

Owing to their excellent strength-to-weight ratio and low density, magnesium alloys have the potential to significantly reduce the weight of automobiles leading to decreased emissions and greater range for electrical vehicles. However, the practicality of magnesium alloys for automotive and aerospace applications is severely hindered by their poor corrosion resistance in aqueous environments. Despite intensive research effort, the underlying mechanism(s) responsible for this poor corrosion resistance remains elusive. Further complicating the situation is the presence of secondary microstructures which are necessary for desirable physical properties but lead to microgalvanic coupling which exacerbates the poor corrosion resistance of magnesium alloys. This …


An Experimental And Numerical Investigation Of Flow Accelerated Flibe Corrosion, David B. Weitzel Jan 2019

An Experimental And Numerical Investigation Of Flow Accelerated Flibe Corrosion, David B. Weitzel

Nuclear Engineering ETDs

Renewed interest in molten salt reactor technology has brought to light the need for a better understanding of FLiBe corrosion. To this end a flowing FLiBe corrosion test loop was designed to test the flow effects of FLiBe corrosion. The loop consists of a pump, melt tank, and stainless-steel tubing assembly that heats the molten salt to high temperatures and circulates it over test specimens. The experiment has been constructed and has completed initial shakedown testing.

To support the flowing FLiBe experiment, a numerical corrosion model that couples FLiBe electrochemistry, solid metal diffusion, and mass transport was implemented. The model …


Electrochemical Detection Of Fentanyl Using Screen-Printed Carbon Electrodes With Confirmatory Analysis Of Fentanyl And Its Analogs In Oral Fluid Using Liquid Chromatography-Tandem Mass Spectrometry, Colby E. Ott Jan 2019

Electrochemical Detection Of Fentanyl Using Screen-Printed Carbon Electrodes With Confirmatory Analysis Of Fentanyl And Its Analogs In Oral Fluid Using Liquid Chromatography-Tandem Mass Spectrometry, Colby E. Ott

Graduate Theses, Dissertations, and Problem Reports

Utilizing screen-printed carbon electrodes (SPCEs), a fast, simple, and sensitive approach toward the detection, identification, and quasi-quantitation of fentanyl was achieved both in an electrochemical cell and as a drop on the electrode surface. Electro-oxidation of fentanyl at the electrode was demonstrated using adsorptive stripping square-wave voltammetry between -0.5 V and +1.6 V with 100 mM Tris-HCl buffer at pH 8.5 as supporting electrolyte. Parameter optimization was conducted during method development to include supporting electrolyte and pH, electrochemical technique, pre-treatment and equilibration time, and various surface modifications. The simplest method utilizing an unmodified SPCE was determined to be appropriate for …


Permanently Heated Micro-Wire Electrodes For Electrochemistry Above The Boiling Point, Zhihua Chang Jan 2019

Permanently Heated Micro-Wire Electrodes For Electrochemistry Above The Boiling Point, Zhihua Chang

Legacy Theses & Dissertations (2009 - 2024)

Heated micro-wire electrodes offer lots of advantages, such as, accurate temperature control, enhanced diffusion and accelerated reaction kinetics through micro-stirring effect, easy cleaning, and low cost, etc. Its application in high temperature electrochemistry has gained lots of interests since its debut in the mid-1990s. A maximum of 250 °C has been reported using heating pulses in duration of 5 ms. For various applications, permanently heating would be more useful. In this study, two types of micro-wire electrodes were successfully developed for electrochemistry above the boiling point with acetaminophen as model compound and a continuous heating time of at least 2 …


Study Of Small Molecules With Dna Monolayers On Gold Electrodes Using Electrochemical Quartz Crystal Microbalance On The Millisecond Timescale, Sarasi Kaushalya Kumari Galagedera Jan 2019

Study Of Small Molecules With Dna Monolayers On Gold Electrodes Using Electrochemical Quartz Crystal Microbalance On The Millisecond Timescale, Sarasi Kaushalya Kumari Galagedera

Legacy Theses & Dissertations (2009 - 2024)

Biosensors based on DNA self-assembled monolayers (SAMs) combined with electrochemical transducers have shown great potential to serve an important role in simple, accurate and inexpensive genetic analyses relevant to many fields. The most popularly adapted method in designing biosensing platforms is the self-assembly of 5’-alkylthiol-modified single stranded or double stranded DNA on gold surfaces followed by a passivation step using a diluent like mercaptohexanol (MCH). Since analytical performance (sensitivity, selectivity and stability) of such sensors is solely related to the probe surface architecture, methods to characterize and measure the surface density has gained a lot of interest among the scientific …


Development Of Flexible Nickel-Zinc And Nickel-Iron Batteries, Xianyang Meng Dec 2018

Development Of Flexible Nickel-Zinc And Nickel-Iron Batteries, Xianyang Meng

Dissertations

The fabrication of flexible nickel-zinc batteries using a facile mixing of electroactive components for electrode preparation is presented. Polytetrafluoroethylene (PTFE) is found to be an effective binder by reducing concentration polarization, providing chemical/physical stability and enhancing flexibility. The zinc electrode containing PTFE maintains its original porous morphology even after hundreds of cycles while polymers such as PEO show morphology change. Each component, as well as the assembled flexible cells show desired flexibility and stability even under bending conditions.

The fabrication of flexible nickel-iron batteries using printable composite electrodes embedded with multiwalled carbon nanotubes (CNT) is also presented. All the metal …


Electropolymerization Of Polyaniline In The Presence Of Ferricyanide: Electrochemical, Spectroscopic And Gravimetric Studies, Lucas Marinelli Dec 2018

Electropolymerization Of Polyaniline In The Presence Of Ferricyanide: Electrochemical, Spectroscopic And Gravimetric Studies, Lucas Marinelli

Master's Theses

In this work, ferricyanide-doped polyaniline (PANI) is electropolymerized by constant current and cyclic voltammetry (CV) measurements with simultaneous monitoring of mass changes using electrochemical quartz crystal microbalance (eQCM). Raman spectroscopy, Fourier transform infrared spectroscopy and CV measurements confirm the incorporation of the ferricyanide into the film and indicate modified electrical conductivity. UV-Vis absorbance spectroscopy and Raman spectroscopy confirm the conducting ‘emeraldine-salt’ state and confirm the presence of polarons, i.e. charge carriers.

The addition of ferricyanide during electropolymerization of the PANI film results in an increase of polymerization rate as confirmed using eQCM. A decrease in counter ion ingress/egress and an …


Corrosion Dynamics Of Carbon Steel In Used Fuel Container Environments, Dan Guo Dec 2018

Corrosion Dynamics Of Carbon Steel In Used Fuel Container Environments, Dan Guo

Electronic Thesis and Dissertation Repository

The current Canadian used nuclear fuel container (UFC) design uses a pressure‑grade carbon steel (CS) vessel with its outer surface coated with a thin layer of copper. One concern regarding the structural integrity of the UFC design is the potential internal corrosion of the CS vessel. Moisture trapped inside a UFC could condense within the gap between the hemispherical head and the cylindrical body of the vessel. The internal UFC environment will be exposed to a continuous flux of ionizing radiation arising from the decay of radionuclides trapped in the used UO2 fuel matrix.

This thesis research project investigates …