Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 411

Full-Text Articles in Entire DC Network

Transition Metal Complexes Of Pyridyltriazole And Bipyridine Ligands, Sen Gao Aug 2020

Transition Metal Complexes Of Pyridyltriazole And Bipyridine Ligands, Sen Gao

LSU Doctoral Dissertations

Four Ni(II) complexes have been obtained with the pyridyltriazole ligand, bpt, or the bis(pyridyltriazole) ligand, m-xpt, in chapter 2. This work was carried out as a comparison with the previously established coordination chemistry of copper(II) with bpt and m-xpt. Initially, the reaction between Ni(II) and bpt only produced one mononuclear compound, [Ni(bpt)2(H2O)2](NO3)2 (1). In order to study the formation of Ni-bpt and Ni-m-xpt complexes in solution, mixtures of Ni(NO3)2 and ligand (m-xpt or bpt) were prepared in different ratios and …


Second Harmonic Generation Spectroscopy And Microscopy Of Liposomes, Nanoparticles, And Cells, Prakash Hamal Aug 2020

Second Harmonic Generation Spectroscopy And Microscopy Of Liposomes, Nanoparticles, And Cells, Prakash Hamal

LSU Doctoral Dissertations

Second harmonic generation (SHG) is used to investigate the factors that impact nanoparticle-based drug-delivery applications. In the first study, molecular adsorption and transport kinetics of a positively-charged dye, malachite green isothiocyanate (MGITC), is characterized at the surface of different colloidal liposomes in water using SHG spectroscopy. The molecular interactions of MGITC is compared to our previous investigations with malachite green (MG). In comparison to MG, MGITC demonstrates stronger adsorption and faster transport through lipid membranes. Correspondingly, the SHG experimental results are in excellent agreement with the molecular dynamics (MD) simulations results. A key finding illustrates the importance of functional groups, …


Solvation Structures And Dynamics Of Small Molecules: Experimental And Computational Studies Using Carbonyl Vibrational Modes As Probe, Xiaoliu Zhang Jul 2020

Solvation Structures And Dynamics Of Small Molecules: Experimental And Computational Studies Using Carbonyl Vibrational Modes As Probe, Xiaoliu Zhang

LSU Doctoral Dissertations

Solutions are ubiquitous in both the global environment and the human body, and play a significant role in scientific research and industrial production. The structures and dynamics of solutions have been studied for centuries. However, conventional experimental methods, whose intrinsic measuring time is on the order of nanoseconds to microseconds, could not detect the fast dynamics taking place in the solution on the timescale of femto- and pico-second. In this dissertation, the ultrafast two-dimensional infrared (2DIR) spectroscopy was applied to characterize the structure and dynamics in three different types of solutions on the sub-picosecond timescale. Linear Fourier transform infrared spectroscopy …


Antimicrobial Strategies For Topical Applications, Kelsey Marie Lopez Jun 2020

Antimicrobial Strategies For Topical Applications, Kelsey Marie Lopez

LSU Doctoral Dissertations

Bacteria can thrive in diverse environments and are often harmless or beneficial. Bacteria in digestive tracts is one example of beneficial bacteria; however, bacteria can be harmful and when this type proliferates, it can cause infections within hosts. Bacterial infections are easily treated with antibiotics in most cases. However, bacteria are also capable of developing mutations which could cause them to become multi-drug resistant and eventually, “superbugs.” Therefore, the development of novel antimicrobial agents and materials capable of combating drug-resistant bacteria is necessary. Research presented in this dissertation focuses on different strategies for minimizing and preventing topical bacterial infections using …


Design, Synthesis And Characterization Of New Superconductors, Xin Gui Jun 2020

Design, Synthesis And Characterization Of New Superconductors, Xin Gui

LSU Doctoral Dissertations

Design and synthesis of new materials are a long-standing goal for chemistry, physics and material science, especially those with intriguing properties such as magnetism and superconductivity. With consideration and incorporation of the highlights in some existing design rules, we successfully designed and discovered the superconductivity in BaPt2Bi2, SrSnP and YbxPt5P.

With the help of valence electron counting method, we synthesized a new intermetallic compound, BaIr2Ge2, which was then found to be non-superconducting above 1.8 K. Thus, we considered both valence electron counting and chemical pressure adjustment to reach …


Copper And Ruthenium Pyridyltriazole Complexes And Their Reactivity Toward Carbon Dioxide And Water, Fatemeh Khamespanah Jun 2020

Copper And Ruthenium Pyridyltriazole Complexes And Their Reactivity Toward Carbon Dioxide And Water, Fatemeh Khamespanah

LSU Doctoral Dissertations

A variety of pyridyltriazole ligands are readily available via click type cycloaddition of alkynylpyridines and azides. We made functionalized tetradentate m-xylylenebis(pyridyltriazole) (m-xpt) ligands with NH2 and NMe2 electron-donating and NO2 electron-withdrawing substituents on the pyridine moieties. Complexation of these ligands with Cu(II) gives dimeric macrocycles with square pyramidal geometry at Cu centers. Previous work in our lab with the unsubstituted [Cu2(m-xpt)2(NO3)2]2+ complex showed reduction to Cu(I) by using ascorbate as reducing agent. Oxidation of the Cu(I) solution in air results in formation of …


Investigating Geochemical Processes Of Fluid-Rock Interactions On Materials Related To Energy And Environment, Zelong Zhang Jun 2020

Investigating Geochemical Processes Of Fluid-Rock Interactions On Materials Related To Energy And Environment, Zelong Zhang

LSU Doctoral Dissertations

Understanding the potential processes of radionuclides released from nuclear waste forms is essential to the safe disposal and containment of nuclear waste. Iodoapatite, a potential waste form for radioiodine, was chosen as a model system to examine the impact by common aqueous anions on iodine release processes. Four semi-dynamic leaching tests were performed using 0.1 mol/L NaCl, Na2CO3, Na3PO4, and Na2SO4 solutions respectively under 90 °C, 1 bar, fixed S/V ratio 5/m (sample surface area to solution volume), and with 24-hour replacement of the leaching solutions. Solution analysis and …


Synthesis, Characterization, And Investigation Of Metal Ion Quenching In Fluorescent Carbon Dot Surrogates For Particulate Matter Black Carbon And Evaluation Of Cellular Health Effects Due To The Surrogate Materials, Christopher Lee Sumner Jr May 2020

Synthesis, Characterization, And Investigation Of Metal Ion Quenching In Fluorescent Carbon Dot Surrogates For Particulate Matter Black Carbon And Evaluation Of Cellular Health Effects Due To The Surrogate Materials, Christopher Lee Sumner Jr

LSU Doctoral Dissertations

Black carbon (BC) is an environmental pollutant of particular concern to many international organizations for both its health effects and environmental effects. Probing health effects of BC as produced in the environment is difficult due to the complex nature of environmental pollutants found in their naturally occurring state. Fluorescent carbon dots (FCDs) were chosen to be used as a surrogate for BC. In the process of examining FCDs and their behavior as surrogates, information was gained on the health effects and behavior of FCDs as a class of nanomaterials for cell and tissue studies, which is outlined in this dissertation. …


New Synthetic Transformations Utilizing Silyloxyallyl Cations And Epoxonium Ions As Reactive Intermediates, Alexander Houston Cleveland May 2020

New Synthetic Transformations Utilizing Silyloxyallyl Cations And Epoxonium Ions As Reactive Intermediates, Alexander Houston Cleveland

LSU Doctoral Dissertations

The development of new chemical transformations is of paramount importance in organic chemistry. In fact the study and creation of new reactions often uncovers new chemical reactivities and creates a new area of chemistry. The purpose of this dissertation is to present the development of new synthetic reactions that were uncovered through previous discoveries. Additionally the underlying theme of this work relies on the intermediacy of cationic reactive intermediates such as silyloxyallyl cations and epoxonium ions. Chapters 1 and 2 present the reactivity of novel silyloxyallyl cations. These cationic species are generated via the mild ionization of a-hydroxy silylenol ethers …


Behavior Of Iron Species And Free Radicals In Ambient Pm2.5 And Pm Surrogates, Cholena Russo Ren May 2020

Behavior Of Iron Species And Free Radicals In Ambient Pm2.5 And Pm Surrogates, Cholena Russo Ren

LSU Doctoral Dissertations

Air pollution, consisting of ambient particulate matter (PM), has been a rising health concern to the public. PM contains free radicals and have been known to damage human cells; however, their free radical chemistry is not well understood. This study utilized various vacuum and/or heat treatments to study free radical behavior in PM2.5 (particulate matter with an aerodynamic diameter of 2.5 mm or less) and PM surrogates and simulated sunlight effects on PM2.5. To mimic PM, iron-silica catalysts (i.e. PM surrogates) were synthesized and real-world ambient PM2.5 was selected. The free radicals in PM2.5 …


Assessment Of Soil Protein And Refractory Soil Organic Matter Across Two Chronosequences Of Newly Developing Marshes In Coastal Louisiana, Usa, Stuart Alexander Mcclellan Feb 2020

Assessment Of Soil Protein And Refractory Soil Organic Matter Across Two Chronosequences Of Newly Developing Marshes In Coastal Louisiana, Usa, Stuart Alexander Mcclellan

LSU Doctoral Dissertations

The impacts of sea-level rise and hydrologic manipulation are threatening the stability of coastal marshes throughout the world, thereby increasing the potential for re-mineralization of soil organic matter (SOM) in these systems. Such threats have prompted marsh restoration efforts, particularly in coastal Louisiana, yet it is unclear how the slowly decomposing (refractory) and quickly decomposing (labile) fractions of SOM may be differentially affected by different approaches to marsh restoration. Additionally, otherwise labile compounds may accumulate in the soil via a range of protective mechanisms, including rapid burial and association with organic compounds that are thought to enhance soil aggregation, such …


Influencing Factors On The Velocity And Temperature Of Propagating Fronts In Acrylate Composites, Samuel Morris Bynum Dec 2019

Influencing Factors On The Velocity And Temperature Of Propagating Fronts In Acrylate Composites, Samuel Morris Bynum

LSU Doctoral Dissertations

Thermal frontal polymerization is a type of polymerization in which a localized reaction zone propagates through an unstirred system. It is incumbent upon the production and transport of heat produced as a result of the exothermic reaction associated with free-radical polymerization. First discovered in the 1970s, frontal polymerization has been since utilized to produce a variety of different materials, utilizing a variety of different chemistries. The temperature of the propagating front and the velocity at which it propagates can be influenced via chemical or physical means. We show that through careful selection of monomers and control of the concentration of …


Modeling And Simulations Of Peptoids, Pu Du Nov 2019

Modeling And Simulations Of Peptoids, Pu Du

LSU Doctoral Dissertations

Polypeptoids, or poly-N-substituted glycines, are a class of sequence defined polymers that are structural mimics of polypeptides. Polypeptoids currently have received a growing interest due to their improved thermal stability, larger chemical diversity, and easier synthetic pathways as compared to peptides. Their lack of backbone hydrogen bonding and stereochemistry coupled with their easily tunability make them an ideal prototypical model system to study the effect of secondary/non-covalent interactions on self-assembly in solution. In order to develop a molecular level understanding of the effect of secondary interactions on polypeptoid self-assembly, systematic studies were carried out using molecular dynamics simulations on several …


Hierarchical Conjugated Polymer Systems Prepared By Controlled Chain-Growth Polymerization, Chunwa Peter Kei Nov 2019

Hierarchical Conjugated Polymer Systems Prepared By Controlled Chain-Growth Polymerization, Chunwa Peter Kei

LSU Doctoral Dissertations

π-Conjugated polymer materials may have a significant economic impact on society by providing means for designing affordable, flexible, and portable organic electronic devices. Their successful commercialization will depend on major scientific advancements, which will challenge human society to seek out ever more detailed and fundamental processes to command. Controlled polymerization affords such a power; allowing for the design of meticulous and precisely defined systems granting detailed insight into structure-property relationships in the polymer materials and bettering understanding of novel physical phenomena.

This dissertation primarily focuses on development and preparation of well-defined hierarchically organized macromolecular systems. The novel chain-growth polymerization methodologies …


The Effects Of Temperature On The Yields Of Aliphatic And Aromatic Products From The Supercritical Pyrolysis Of 1-Octene, Elizabeth Anne Hurst Nov 2019

The Effects Of Temperature On The Yields Of Aliphatic And Aromatic Products From The Supercritical Pyrolysis Of 1-Octene, Elizabeth Anne Hurst

LSU Doctoral Dissertations

Prior to their combustion, fuels for future high-speed aircraft are expected to experience supercritical conditions, leading to the production of polycyclic aromatic hydrocarbons (PAH), precursors to solid carbonaceous deposits, via pyrolytic reactions. These solid deposits can clog fuel-transfer lines, causing unsafe aircraft operation. To prevent the formation of fuel-line deposits, it is critical to understand the reaction pathways that lead to PAH formation in the supercritical fuel pyrolysis environment.

To better understand the role of large 1-alkenes in PAH formation, supercritical pyrolysis experiments with model fuel 1-octene, a representative 1-alkene product from supercritical n-alkane pyrolysis, have been performed. The …


Electrification Ionization: Fundamentals And Applications, Bijay Kumar Banstola Nov 2019

Electrification Ionization: Fundamentals And Applications, Bijay Kumar Banstola

LSU Doctoral Dissertations

Electrification ionization is a method to produce ions from solid samples by charge separation. This separation of charge can be enhanced by organic molecules known as matrix compounds to produce highly charged molecules. In this research, new methods were developed for the application of electrification ionization for surface analysis and the ionization mechanism was investigated. First, an electrification ionization matrix was used for tissue imaging using laser ablation. A two-component matrix of 2-nitrophloroglucinol and silica nanoparticles was found to increase the number of multiply charged ions from the tissue. Images of mouse brain with multiply charged ions were obtained. In …


Quartz Crystal Microbalance Based Sensors For Detection And Discrimination Of Volatile Organic Compounds Using Ionic Materials, Stephanie R. Vaughan Oct 2019

Quartz Crystal Microbalance Based Sensors For Detection And Discrimination Of Volatile Organic Compounds Using Ionic Materials, Stephanie R. Vaughan

LSU Doctoral Dissertations

Volatile organic compounds (VOCs) are prevalent in everyday life, ranging from household chemicals, naturally occurring scents from common plants and animals, to industrial-scale chemicals. Many of these VOCs are known to cause adverse health and environmental effects and require regulation to prevent pollution. Detecting VOCs plays a critical role in food quality control, environmental quality control, medical diagnostics, and explosives detection. Thus, development of adequate sensing devices for detection and discrimination of VOCs is of great importance. In recent years, use of quartz crystal microbalance (QCM) based sensor arrays for analyses of VOCs has attracted significant interest. Detection of VOCs …


Development Of A Tunable Platform For The Study Of Geomacromolecular Matrices Using Controlled Radical Polymerization, Arjun Pandey Oct 2019

Development Of A Tunable Platform For The Study Of Geomacromolecular Matrices Using Controlled Radical Polymerization, Arjun Pandey

LSU Doctoral Dissertations

Soil is an important environmental component, and the study of soil processes have many practical implications such as improvement in agriculture, mitigation of climate change etc. The widespread use of Agricultural Chemicals (ACs) in modern agriculture has resulted in adverse effects in environment and human health mostly through contamination into food and water sources. Study of fate, bioavailability, and transport of ACs involves molecular level understanding of their interactions with soil. This can be challenging due to complex and heterogeneous nature of soil. One common approach used is the correlation of macroscopic properties of soil, (e.g. sorption) with empirical parameters …


Thioenamide Synthesis Inspired By Peptide Macrocycles, Joshua Allen Lutz Oct 2019

Thioenamide Synthesis Inspired By Peptide Macrocycles, Joshua Allen Lutz

LSU Doctoral Dissertations

Despite advances in medicine, antibiotic resistance threatens to return once preventable diseases to the human population. The microbisporicins are 24-amino acid antibiotic peptides belonging to the lantibiotic class, which pathogens have been slow to develop resistance. The uncommon post-translational modification S-[(Z)-2-aminovinyl]-D-cysteine (AviCys) is likely crucial to their activity, and appears in a small number of other peptides with compelling biological activities. Total synthesis of an AviCys-containing peptide has eluded the chemical community.

The primary challenge of AviCys synthesis is the construction of a thioenamide functional group. We demonstrate that acid-promoted reactions between an amide and …


Ultrafast And Real-Time Dynamics Of Nanomaterials Studied By Advanced Spectroscopic Techniques, Jeewan Chaminda Ranasinghe Oct 2019

Ultrafast And Real-Time Dynamics Of Nanomaterials Studied By Advanced Spectroscopic Techniques, Jeewan Chaminda Ranasinghe

LSU Doctoral Dissertations

Ultrafast and nonlinear spectroscopies are used to study excited-state dynamics and monitor real-time growth dynamics of different types of nanomaterials. In the first study, the growth dynamics of colloidal gold-silver core-shell nanoparticles are studied using in situ second harmonic generation and extinction spectroscopy. The growth lifetimes are studied under different reaction conditions, resulting in different silver shell thicknesses, with spectral comparisons to finite-difference time-domain calculations. The results are consistent with a three-step growth process. During the first step of the nanoparticle growth reaction, rough and uneven surfaces are formed rapidly giving rise to plasmonic hot spots with corresponding broad, red-shifted …


Turn-On Near-Infrared Fluorescent Sensors For Selective Monitoring Of Kinase Activity, Gerard Thomas Ducharme Oct 2019

Turn-On Near-Infrared Fluorescent Sensors For Selective Monitoring Of Kinase Activity, Gerard Thomas Ducharme

LSU Doctoral Dissertations

Reliable and selective detection of specific biopolymers is critical in a broad range of biomedical and technological areas, including availability of simple and efficient point-of-care-compatible systems for the detection of prognostic, pharmacodynamic and predictive biomarkers. Monitoring epidermal growth factor receptor (EGFR) tyrosine kinase is of major significance due to its link to many epithelial cancers. This task is complicated by the high rate of mutation occurring in patients treated with kinase inhibitors. This dissertation describes a conceptually novel design and synthesis of turn-on near-infrared fluorescent sensors for selective and sensitive detection of EGFR. The fluorescent signal generation mechanism is based …


Sequence-Defined Ionic Peptoid Block Copolymers: Synthesis And Solution Self-Assembly, Garrett Leigh Sternhagen Sep 2019

Sequence-Defined Ionic Peptoid Block Copolymers: Synthesis And Solution Self-Assembly, Garrett Leigh Sternhagen

LSU Doctoral Dissertations

This work covers efforts to develop a peptoid-based model system for systematically studying the role of ionic functional groups in determining the structure of ionic block copolymer (BCP) self-assemblies in water. A key challenge in the study of polyelectrolytes is the lack of synthetic control over the location of ionic monomers along a polymer chain. We developed a model system based on sequence-defined ionic peptoid BCPs having discrete chain length and precisely positioned ionic monomers along the chain to specifically address this issue. In Chapter 1, synthetic strategies to access well-defined polypeptoids and their application in BCP synthesis are reviewed. …


Modeling Chemical Reactivity In Aqueous And Organic Systems: From Electronic Structure Methods To Force Field Development, Caitlin Gibson Bresnahan Aug 2019

Modeling Chemical Reactivity In Aqueous And Organic Systems: From Electronic Structure Methods To Force Field Development, Caitlin Gibson Bresnahan

LSU Doctoral Dissertations

Modeling reactivity in chemical systems has evolved dramatically in line with the capabilities of modern computing. Despite the advances in computational ability, the level in which one can model a system depends on a number of factors including the region of reactivity, size of the system, level of sophistication required in the molecular description, and so on. Electronic structure methods allow for a detailed description of the potential energy surface and inherently include all essential physics required for reactivity to occur, however these methods are limited by their computational expense. On the other hand, force fields allow for an atomistic …


In Vitro Evaluation Of Ovarian Cancer Tumorigenesis As A Function Of Quinone Oxidoreducatse-1 And Cell Phenotype, Milcah S. Jackson Jun 2019

In Vitro Evaluation Of Ovarian Cancer Tumorigenesis As A Function Of Quinone Oxidoreducatse-1 And Cell Phenotype, Milcah S. Jackson

LSU Doctoral Dissertations

In vitro multicellular spheroids are attractive model systems for assessing genetic and epigenetic changes that occur in diseased tissues. Understanding how such alterations in gene and subsequent protein expression affect disease progression and metastasis, drug resistance, and recurrence is of great interest in cancer research. In this regard, examining expression and activity of proteins, such as those with cytoprotective ability that are overexpressed in cancer cells, in addition to cell phenotype (i.e., stem-like, epithelial, mesenchymal, or mixed), are two ways to evaluate genetic and epigenetic changes. Moreover, determining the impact that cytoprotective proteins and cell phenotype have on tumor formation …


Chemosensors Based On Higher Energy Gap Control Of Fluorescence In Conjugated Polymers, Chun-Han Wang Jun 2019

Chemosensors Based On Higher Energy Gap Control Of Fluorescence In Conjugated Polymers, Chun-Han Wang

LSU Doctoral Dissertations

Conjugated polymers (CPs) have been widely investigated for their remarkably high sensitivity towards various chemical detection applications. CPs can exhibit effective transduction of certain analyte binding events through changes in fluorescence. These changes include amplified fluorescence quenching ("turn-offmechanism") or an appearance of a fluorescent emission ("turn-onmechanism"). Whereas turn-offsensors can be readily designed and are widely used, amplifying turn-onsensors, from a practical standpoint, are more convenient to use but are more challenging to design.

This dissertation primarily focuses on the development and study of conjugated polymer based amplifying turn-onfluorescence chemosensors utilizing the novel “higher …


Chemical Approaches For Nanofabrication Based On Colloidal Lithography With Organosilanes, Nanoparticles And Nickel Films: The Role Of Water In Directing Surface Self-Assembly, Neepa Malsi Kumari Kuruppu Arachchige May 2019

Chemical Approaches For Nanofabrication Based On Colloidal Lithography With Organosilanes, Nanoparticles And Nickel Films: The Role Of Water In Directing Surface Self-Assembly, Neepa Malsi Kumari Kuruppu Arachchige

LSU Doctoral Dissertations

The capabilities for accomplishing fundamental surface studies with molecular systems are demonstrated in this dissertation using measurement and imaging modes of scanning probe microscopy. Model systems were chosen for investigations of surface self-assembly mechanisms, with an emphasis on understanding the role of interfacial water in surface reactivity. A key strategy for molecular level studies was to prepare nanostructures using protocols with colloidal lithography and scanning probe-based lithography (SPL). Nanofabricated samples were characterized ex situ with contact and tapping-mode atomic force microscopy (AFM) after key reaction steps, providing direct views of changes in surface morphology at the nanoscale. Magnetic sample modulation …


Photo-Physical Properties Of Novel Gumbos For Optoelectronic Applications, Thenahandi Prasanthi Deepthika De Silva May 2019

Photo-Physical Properties Of Novel Gumbos For Optoelectronic Applications, Thenahandi Prasanthi Deepthika De Silva

LSU Doctoral Dissertations

Organic Light Emitting Diodes (OLEDs) are predicted to revolutionize next generation consumer electronics by offering many advantageous device characteristics, including low power consumption, low heat dissipation, a tunable and wider color gamut, high resolution and contrast, light weight, flexibility, and semi-transparency. However, a major limiting factor for OLEDs to reach their full potential is that only a few known blue OLED emitters with substantial spectral purity and longevity are available to date. Therefore, focus of this research is on understanding and addressing limitations of OLED emitters, with an emphasis on improving the characteristics of blue emitters.

The work presented in …


Application Of X-Ray Grating Interferometry To Polymer/Flame Retardant Blends In Additive Manufacturing, Omoefe Joy Kio May 2019

Application Of X-Ray Grating Interferometry To Polymer/Flame Retardant Blends In Additive Manufacturing, Omoefe Joy Kio

LSU Doctoral Dissertations

X-ray grating interferometry is a nondestructive tool for visualizing the internal structures of samples. Image contrast can be generated from the absorption of X-rays, the change in phase of the beam and small-angle X-ray scattering (dark-field). The attenuation and differential phase data obtained complement each other to give the internal composition of a material and large-scale structural information. The dark-field signal reveals sub-pixel structural detail usually invisible to the attenuation and phase probe, with the potential to highlight size distribution detail in a fashion faster than conventional small-angle scattering techniques. This work applies X-ray grating interferometry to the study of …


Cationic Cobalt (Ii) Hydroformylation, Drew Michael Hood Mar 2019

Cationic Cobalt (Ii) Hydroformylation, Drew Michael Hood

LSU Doctoral Dissertations

While investigating a bimetallic cobalt hydroformylation catalyst a new class of monometallic cationic cobalt (II) hydroformylation catalyst were discovered. These newly discovered catalyst proved to be very unique with high hydroformylation activity under mild conditions. The pre-catalyst were characterized using various methods including NMR, EPR, MS, and X-ray crystallography. Similarly the active catalyst was also investigated using NMR, EPR, FTIR, and X-ray crystallography. Various catalyst modifications were investigated for their effects on hydroformylation activity. Likewise various reaction parameters were probed to determine their effect on hydroformylation activity. Finally the best cationic cobalt (II) catalyst were directly compared to industry standards …


Infrared Laser Ablation For Biomolecule Sampling, Kelin Wang Mar 2019

Infrared Laser Ablation For Biomolecule Sampling, Kelin Wang

LSU Doctoral Dissertations

In this research, an infrared laser at a wavelength of 3 µm was used to ablate material from tissue sections for biomolecule analysis. Pulsed infrared (IR) irradiation of tissue with a focused laser beam efficiently removed biomolecules, such as proteins, enzymes, DNA, and RNA from tissue sections for further analysis. In a proteomics project, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was used to determine regions of interest (ROI) for laser ablation. The matrix was then washed off. By overlaying the MSI generated heat-map, the section was sampled using IR laser ablation and custom stage-control software. Two ROI were selected …