Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Synthesis And Study Of Hybrid Organic – Inorganic Polyhedral Oligomeric Silsesquioxanes (Poss) Based Polymers, Gunjan A, Gadodia Sep 2009

Synthesis And Study Of Hybrid Organic – Inorganic Polyhedral Oligomeric Silsesquioxanes (Poss) Based Polymers, Gunjan A, Gadodia

Open Access Dissertations

Hybrid organic-inorganic materials represent a new class of materials having scientific and technological potential. In this thesis, Polyhedral Oligomeric Silsesquioxanes (POSS) are used as an inorganic building block which has been tethered to an organic polymer. POSS are silica precusors, having a well defined silsesquioxane cental core surrounded by an organic periphery which makes them compatible with monomers and possibly polymers. The objectives of this study are to (1) study the basic structures of POSS homopolymers, (2) to incorporate POSS building blocks by a bottomup approach into polymer chains and study the resulting morphologies, and (3) to study the thin …


Atomic-Scale Analysis Of Plastic Deformation In Thin-Film Forms Of Electronic Materials, Kedarnath Kolluri May 2009

Atomic-Scale Analysis Of Plastic Deformation In Thin-Film Forms Of Electronic Materials, Kedarnath Kolluri

Open Access Dissertations

Nanometer-scale-thick films of metals and semiconductor heterostructures are used increasingly in modern technologies, from microelectronics to various areas of nanofabrication. Processing of such ultrathin-film materials generates structural defects, including voids and cracks, and may induce structural transformations. Furthermore, the mechanical behavior of these small-volume structures is very different from that of bulk materials. Improvement of the reliability, functionality, and performance of nano-scale devices requires a fundamental understanding of the atomistic mechanisms that govern the thin-film response to mechanical loading in order to establish links between the films' structural evolution and their mechanical behavior. Toward this end, a significant part of …


Developing Reactive Molecular Dynamics For Understanding Polymer Chemical Kinetics, Kenneth D. Smith May 2009

Developing Reactive Molecular Dynamics For Understanding Polymer Chemical Kinetics, Kenneth D. Smith

Open Access Dissertations

One of the challenges in understanding polymer flammability is the lack of information about microscopic events that lead to macroscopically observed species, and Reactive Molecular Dynamics is a promising approach to obtain this crucially needed information. The development of a predictive method for condensed-phase reaction kinetics can provide significant insight into polymer ammability, thus helping guide future synthesis of fire-resistant polymers. Through this dissertation, a new reactive forcefield, RMDff, and Reactive Molecular Dynamics program, RxnMD, have been developed and used to simulate such material chemistry. It is necessary to have accurate description of chemical kinetics to describe quantitative chemical kinetics. …