Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Quantification Of Intervertebral Disc Strain From High-Resolution Ultrasound Imaging During Dynamic Loading, Diya Sakhrani Dec 2023

Quantification Of Intervertebral Disc Strain From High-Resolution Ultrasound Imaging During Dynamic Loading, Diya Sakhrani

Discovery Undergraduate Interdisciplinary Research Internship

High-resolution ultrasound imaging employs high-frequency sound waves that can be used to noninvasively visualize the structures within the body, facilitating medical diagnosis without the need for open surgery. The widespread utilization of ultrasound is attributed to its affordability, non-invasive characteristics, and use of non-ionizing radiation. Nevertheless, ultrasound is prone to artifacts originating from the surrounding environment, gas-liquid interfaces, or dense tissue. These artifacts are common in ultrasound images and can cause dropout, noise, and degraded resolution. In this study we analyzed intervertebral disc (IVD) strain during two axial compression testing cycles of bovine intervertebral discs with a 2-dimensional direct deformation …


Brain Motion, Deformation, And Potential Injury During Soccer Heading, Charles F. Babbs Dec 2017

Brain Motion, Deformation, And Potential Injury During Soccer Heading, Charles F. Babbs

Weldon School of Biomedical Engineering Faculty Working Papers

This paper addresses the problem of what is happening physically inside the skull during head-ball contact. Mathematical models based upon Newton’s laws of motion and numerical methods are used to create animations of brain motion and deformation inside the skull.

Initially a 1 cm gap filled with cerebrospinal fluid (CSF) separates the brain from the rigid skull in adults and older children. Whole head acceleration induces a pulse of artificial gravity within the skull. Because brain density differs slightly from that of CSF, the brain accelerates and strikes the inner aspect of the skull, undergoing viscoelastic deformation, ranging from 1 …


Determination Of Master Compliance Curve For Extruded Semolina Pasta, Laura E. Emery, Martin Okos Oct 2013

Determination Of Master Compliance Curve For Extruded Semolina Pasta, Laura E. Emery, Martin Okos

The Summer Undergraduate Research Fellowship (SURF) Symposium

The dependence of the rate of relaxation of semolina pasta on moisture content and temperature and how it affects shrinkage during drying has not yet been determined. The purpose of this research was to develop an equation that relates moisture content and temperature in order to obtain a master curve for creep of the product. When found, this equation could help to optimize the drying process and increase the quality of the final pasta product. Semolina flour mixed with water and propionic acid to create a 35% wet basis product was extruded on a C.W. Brabender 2523 to obtain a …


A New Biomechanical Head Injury Criterion, Charles F. Babbs Jan 2006

A New Biomechanical Head Injury Criterion, Charles F. Babbs

Weldon School of Biomedical Engineering Faculty Publications

This paper presents a new analysis of the physics of closed head injury caused by intense acceleration of the head. At rest a 1 cm gap filled with cerebrospinal fluid (CSF) separates the human brain from the skull. During impact whole head acceleration induces artificial gravity within the skull. Because its density differs slightly from that of CSF, the brain accelerates, strikes the inner aspect of the rigid skull, and undergoes viscoelastic deformation. Analytical methods for a lumped parameter model of the brain predict internal brain motions that correlate well with published high-speed photographic studies. The same methods predict a …


Brain Motion And Deformation During Closed Head Injury In The Presence Of Cerebrospinal Fluid, Charles F. Babbs Jun 2004

Brain Motion And Deformation During Closed Head Injury In The Presence Of Cerebrospinal Fluid, Charles F. Babbs

Weldon School of Biomedical Engineering Faculty Publications

This paper presents a new analysis of the physics of closed head injury following brief, intense acceleration of the head. It focuses upon the buoyancy of the brain in cerebrospinal fluid, which protects against damage, the propagation of strain waves through the brain substance, which causes damage, and the concentration of strain in critical anatomic regions, which magnifies damage. Numerical methods are used to create animations or "movies" of brain motion and deformation. Initially a 1 cm gap filled with cerebrospinal fluid (CSF) separates the brain from the skull. Whole head acceleration induces artificial gravity within the skull. The brain …