Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Development Of A Real-Time Single-Lead Single-Beat Frequency-Independent Myocardial Infarction Detector, Harold Martin Mar 2021

Development Of A Real-Time Single-Lead Single-Beat Frequency-Independent Myocardial Infarction Detector, Harold Martin

FIU Electronic Theses and Dissertations

The central aim of this research is the development and deployment of a novel multilayer machine learning design with unique application for the diagnosis of myocardial infarctions (MIs) from individual heartbeats of single-lead electrocardiograms (EKGs) irrespective of their sampling frequencies over a given range. To the best of our knowledge, this design is the first to attempt inter-patient myocardial infarction detection from individual heartbeats of single-lead (lead II) electrocardiograms that achieves high accuracy and near real-time diagnosis. The processing time of 300 milliseconds to a diagnosis is just at the time range in between extremely fast heartbeats of around 300 …


Correlating The Effect Of Dynamic Variability In The Sensor Environment On Sensor Design, Pulak Bhushan Mar 2021

Correlating The Effect Of Dynamic Variability In The Sensor Environment On Sensor Design, Pulak Bhushan

FIU Electronic Theses and Dissertations

This dissertation studies the effect of biofluid dynamics on the electrochemical response of a wearable sensor for monitoring of chronic wounds. The research investigates various dynamic in vivo parameters and correlates them with experimentally measured behavior with wound monitoring as a use case. Wearable electrochemical biosensors suffer from several unaddressed challenges, like stability and sensitivity, that need to be resolved for obtaining accurate data. One of the major challenges in the use of these sensors is continuous variation in biofluid composition. Wound healing is a dynamic process with wound composition changing continuously. This dissertation investigates the effects of several in …


Development Of All-Optical Quantitative Ultrasound Imaging System, Mohamed Abdulrahman Almadi Feb 2021

Development Of All-Optical Quantitative Ultrasound Imaging System, Mohamed Abdulrahman Almadi

FIU Electronic Theses and Dissertations

Ultrasound (US) is a well-established deep-tissue imaging modality in biomedicine. It distinguishes different tissue types based on their echogenicity, but this approach provides limited diagnostic sensitivity and accuracy. The majority of the US transducers nowadays rely on lead zirconate titanate (PZT) ceramic elements to transmit and receive ultrasound. Unfortunately, significant limitations arise from these transducers due to their frequency characteristics and complex fabrication process. A recently introduced technique, Quantitative Ultrasound (QUS) Measurement, shows a great promise to improve US-based tissue diagnosis, but it requires a transducer with a large spectrum bandwidth, which is a feature not available in PZT transducers. …