Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Entire DC Network

The Impact Of Mutations In The Arabidopsis Apetela (Ap3) Gene, Hazel R. Frans, Tara Phelps-Durr Apr 2024

The Impact Of Mutations In The Arabidopsis Apetela (Ap3) Gene, Hazel R. Frans, Tara Phelps-Durr

SACAD: John Heinrichs Scholarly and Creative Activity Days

The purpose of this research is to understand the molecular functioning of the Arabidopsis thaliana Apetela (Ap3) gene. We created mutations in two sites of the gene, AP3-3 and AP3-5. These are predicted to change AP3 protein structure, which may result in a mutated flower. Analyzing the effects of new mutations allows an understanding of protein formation both in plants and humans.


Insights Into The Biotechnology Potential Of Methanosarcina, Sean Carr, Nicole R. Buan Dec 2022

Insights Into The Biotechnology Potential Of Methanosarcina, Sean Carr, Nicole R. Buan

Department of Biochemistry: Faculty Publications

Methanogens are anaerobic archaea which conserve energy by producing methane. Found in nearly every anaerobic environment on earth, methanogens serve important roles in ecology as key organisms of the global carbon cycle, and in industry as a source of renewable biofuels. Environmentally, methanogenic archaea play an essential role in the reintroducing unavailable carbon to the carbon cycle by anaerobically converting low-energy, terminal metabolic degradation products such as one and two-carbon molecules into methane which then returns to the aerobic portion of the carbon cycle. In industry, methanogens are commonly used as an inexpensive source of renewable biofuels as well as …


Methanogen Metabolic Flexibility, Sean Carr Jul 2022

Methanogen Metabolic Flexibility, Sean Carr

School of Biological Sciences: Dissertations, Theses, and Student Research

Methanogens are obligately anaerobic archaea which produce methane as a byproduct of their respiration. They are found across a wide diversity of environments and play an important role in cycling carbon in anaerobic spaces and the removal of harmful fermentation byproducts which would otherwise inhibit other organisms. Methanogens subsist on low-energy substrates which requires them to utilize a highly efficient central metabolism which greatly favors respiratory byproducts over biomass. This metabolic strategy creates high substrate:product conversion ratios which is industrially relevant for the production of biomethane, but may also allow for the production of value-added commodities. Particularly of interest are …


Investigation Of A Carbon Monoxide Dehydrogenase From An Uncultured Archaeon, Luke Moore Jan 2022

Investigation Of A Carbon Monoxide Dehydrogenase From An Uncultured Archaeon, Luke Moore

Dissertations, Master's Theses and Master's Reports

The Nickel based Carbon Monoxide Dehydrogenase (CODH) is an anaerobic metalloenzyme responsible for the reversible conversion of CO and water into CO2 and 2 protons and 2 electrons. This enzyme has importance in the environment as one of Earth’s first carbon fixation pathways, and for human uses as a potential source of biofuels and other commodity chemicals. CODH enzymes are present in a wide array of taxa, many of which are uncultured. In this study we express and purify the catalytic subunit (CooS) of the anaerobic CODH from an uncultured Hydrothermarchaeota JdFR-17 co-expressed with the nickel insertion accessory protein (CooC) …


Development Of A Lectin-Fc Fusion Protein With Antiviral And Anti-Cancer Activity., Matthew William Dent May 2019

Development Of A Lectin-Fc Fusion Protein With Antiviral And Anti-Cancer Activity., Matthew William Dent

Electronic Theses and Dissertations

This thesis describes the development of a novel lectin-Fc fusion protein and its antiviral and anti-cancer activity. The molecule, Avaren-Fc (AvFc), is a fusion of a variant of the actinomycete lectin actinohivin (Avaren) and the Fc region of human IgG1, and is selective for the terminal α1,2-mannose residues found at the ends of high-mannose-type glycans that can be found on the surface of certain heavily glycosylated viruses and cancer cells. Here, AvFc was found to be able to neutralize simian immunodeficiency virus as well as Hepatitis C virus with nanomolar IC50 values. Furthermore, AvFc recognizes a number of cell …


Cost-Effective Paper-Based Diagnostic Using Split Proteins To Detect Yeast Infections, Zachary R. Berglund, Kevin V. Solomon, Mohit S. Verma, Moiz Rasheed, Zachary Hartley, Kevin Fitzgerald, Kok Zhi Lee, Janice Chan, Julianne Dejoie, Makayla Schacht, Alex Zavala Aug 2018

Cost-Effective Paper-Based Diagnostic Using Split Proteins To Detect Yeast Infections, Zachary R. Berglund, Kevin V. Solomon, Mohit S. Verma, Moiz Rasheed, Zachary Hartley, Kevin Fitzgerald, Kok Zhi Lee, Janice Chan, Julianne Dejoie, Makayla Schacht, Alex Zavala

The Summer Undergraduate Research Fellowship (SURF) Symposium

The common yeast infection, vulvovaginal candidiasis, affects three out of four women throughout their lifetime and can be spread to their child in the form of oral candidiasis (thrush). This disease is caused by the fungal pathogen Candida albicans, which is also a major cause of systemic candidiasis, a rarer but deadly disease with up to a 49% lethality rate. Current widely-used diagnostic methods include cell cultures, pH tests, and antibody detection, to assist effective treatment. Despite availability of various diagnostic methods, there is no inexpensive, rapid, and accurate way to detect C. albicans infection. This project aims to …


Improving The Thermal Stability Of Cellobiohydrolase Cel7a From Hypocrea Jecorina By Directed Evolution, Frits Goedegebuur, Lydia Dankmeyer, Peter Gualfetti, Saeid Karkehabadi, Henrik Hansson, Suvamay Jana, Vicky Huynh, Bradley R. Kelemen, Paulien Kruithof, Edmund A. Larenas, Pauline J. M. Teunissen, Jerry Ståhlberg, Christina M. Payne, Colin Mitchinson, Mats Sandgren Aug 2017

Improving The Thermal Stability Of Cellobiohydrolase Cel7a From Hypocrea Jecorina By Directed Evolution, Frits Goedegebuur, Lydia Dankmeyer, Peter Gualfetti, Saeid Karkehabadi, Henrik Hansson, Suvamay Jana, Vicky Huynh, Bradley R. Kelemen, Paulien Kruithof, Edmund A. Larenas, Pauline J. M. Teunissen, Jerry Ståhlberg, Christina M. Payne, Colin Mitchinson, Mats Sandgren

Chemical and Materials Engineering Faculty Publications

Secreted mixtures of Hypocrea jecorina cellulases are able to efficiently degrade cellulosic biomass to fermentable sugars at large, commercially relevant scales. H. jecorina Cel7A, cellobiohydrolase I, from glycoside hydrolase family 7, is the workhorse enzyme of the process. However, the thermal stability of Cel7A limits its use to processes where temperatures are no higher than 50 °C. Enhanced thermal stability is desirable to enable the use of higher processing temperatures and to improve the economic feasibility of industrial biomass conversion. Here, we enhanced the thermal stability of Cel7A through directed evolution. Sites with increased thermal stability properties were combined, and …


Microfluidic Cantilever Detects Bacteria And Measures Their Susceptibility To Antibiotics In Small Confined Volumes, Hashem Etayash, M. F. Khan, Kamaljit Kaur, Thomas Thundat Oct 2016

Microfluidic Cantilever Detects Bacteria And Measures Their Susceptibility To Antibiotics In Small Confined Volumes, Hashem Etayash, M. F. Khan, Kamaljit Kaur, Thomas Thundat

Pharmacy Faculty Articles and Research

In the fight against drug-resistant bacteria, accurate and high-throughput detection is essential. Here, a bimaterial microcantilever with an embedded microfluidic channel with internal surfaces chemically or physically functionalized with receptors selectively captures the bacteria passing through the channel. Bacterial adsorption inside the cantilever results in changes in the resonance frequency (mass) and cantilever deflection (adsorption stress). The excitation of trapped bacteria using infrared radiation (IR) causes the cantilever to deflect in proportion to the infrared absorption of the bacteria, providing a nanomechanical infrared spectrum for selective identification. We demonstrate the in situ detection and discrimination of Listeria monocytogenes at a …


Inkjet Printing Of Polarized Yeast Cells, Xiuyuan Yang, Kari Clase Oct 2013

Inkjet Printing Of Polarized Yeast Cells, Xiuyuan Yang, Kari Clase

The Summer Undergraduate Research Fellowship (SURF) Symposium

The motivation is to applying engineering knowledge to develop 3D bio-printing in inkjet printer (first stage--monolayer). To achieve the goal, there are three problems to solve. First, we have to figure out regulation of growth of target cells; inability to regulate the location and pattern of growing cells make us even unable to build 3D printer in the direct way. Second problem is how to protect of yeast cells from high temperature and viscous force when printing. The third issue is how to modify the inkjet printer especially the feeding system in order to implement printing on other materials rather …


Expression, Production, And Purification Of Novel Therapeutic Proteins, Mckinzie Shea Fruchtl May 2013

Expression, Production, And Purification Of Novel Therapeutic Proteins, Mckinzie Shea Fruchtl

Graduate Theses and Dissertations

Interest in the production of recombinant proteins consisting of collagen binding domain (CBD) fused to a bioactive material has increased due to the targeting/attachment capabilities of CBD. For example, CBD fusions can be applied to the reversing of bone density loss and the repair of the eardrum, specifically, by choosing an appropriate fusion partner (parathyroid hormone or epidermal growth factor). The production of CBD fusions was examined using batch and fed-batch culturing of Escherichia coli to express the fusion proteins, and affinity chromatography to isolate the final product.

Different medium formulations, feeding strategies, and induction methods were tested in order …


Cloning And Characterization Of The Cell Wall Acting Enzyme Cd1034 From The Pathogen Clostridium Difficile, Zachary Suter Apr 2012

Cloning And Characterization Of The Cell Wall Acting Enzyme Cd1034 From The Pathogen Clostridium Difficile, Zachary Suter

Honors Projects in Science and Technology

The manifestation of multidrug resistance in bacteria over the past several decades has resulted in one of the foremost challenges in the management of infectious diseases. The question arises, “How do we address this growing problem?” One solution to stem the growing rise in antimicrobial resistance is to investigate new targets, while another approach is to re-examine classical antibacterial targets with a fresh perspective. The aim of this paper is to begin the process of antibacterial development for the pathogen Clostridium difficile by characterizing the cell wall acting glucosaminidase CD1034. It is inunderstanding how CD1034 functions biochemically that it can …


Expression Of Lipase From Mycobacterium Tuberculosis In Nicotiana Tobacum And Lactuca Sativa Chloroplasts, Bethany Lloyd Jan 2012

Expression Of Lipase From Mycobacterium Tuberculosis In Nicotiana Tobacum And Lactuca Sativa Chloroplasts, Bethany Lloyd

Electronic Theses and Dissertations

Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis (M. tuberculosis), is a global threat and the leading cause of death among individuals infected with HIV. TB treatment requires multi-drug cocktails, due to the increasing rates of drug resistance of the bacterium. With multi-drug cocktails, strains have been documented to be resistant to all major drugs in the fight against TB. Since the strains are drug resistant, it calls for an increasing need for vaccine and treatment development for the purpose of preventing and managing the disease. The most widely distributed vaccine against TB is Bacillus Calmette-Gue´rin (BCG). Apart from being …


Bioprospecting, Philip A. Reed Jan 2005

Bioprospecting, Philip A. Reed

STEMPS Faculty Publications

The article discusses that the product applications of bioprospecting are almost limitless. This area of biotechnology has been labeled bioprospecting, and it is a practice that is creating worldwide controversy. Defined simply, bioprospecting is "scientific research that looks for a useful application, process, or product in nature." However, as with most biotechnologies, the definition does not address the complexities of bioprospecting. Archeologists are finding that some biotechnologies, such as the use of herbs for medicine and the use of fermentation and yeast in food products, date back 5,000 to 10,000 years (De Miranda, 2004). The four main categories of biotechnologies …


Sds Non-Acrylamide Polymeric Gel-Filled Capillary Electrophoresis For Molecular Size Separation Of Protein, Devon Andres Aug 1993

Sds Non-Acrylamide Polymeric Gel-Filled Capillary Electrophoresis For Molecular Size Separation Of Protein, Devon Andres

Honors Theses

Sodium dodecyl sulfide (SDS) non-acrylamide gel-filled capillary columns are a new technology being used for analysis and separation of biotechnology-derived proteins. This research was to compare this new technology to the current methods of SDS polyacrylamide gel electrophoresis (SDS-PAGE) and high-performance size-exclusion chromatography (HPSEC). The molecular mass of four different recombinant proteins were determined by two commercialized SDS non-acrylamide gel-filled capillary columns, SDS-PAGE, and HPSEC. The data obtained showed that the SDS non-acrylamide gel-filled capillary columns were compatible with the SDS-PAGE technique for molecular mass determination. HPSEC was shown to be unreliable for molecular weight determination. SDS non-acrylamide gel-filled capillary …