Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Deep Neural Networks With Confidence Sampling For Electrical Anomaly Detection, Norman L. Tasfi, Wilson A. Higashino, Katarina Grolinger, Miriam A. M. Capretz Jan 2017

Deep Neural Networks With Confidence Sampling For Electrical Anomaly Detection, Norman L. Tasfi, Wilson A. Higashino, Katarina Grolinger, Miriam A. M. Capretz

Electrical and Computer Engineering Publications

The increase in electrical metering has created tremendous quantities of data and, as a result, possibilities for deep insights into energy usage, better energy management, and new ways of energy conservation. As buildings are responsible for a significant portion of overall energy consumption, conservation efforts targeting buildings can provide tremendous effect on energy savings. Building energy monitoring enables identification of anomalous or unexpected behaviors which, when corrected, can lead to energy savings. Although the available data is large, the limited availability of labels makes anomaly detection difficult. This research proposes a deep semi-supervised convolutional neural network with confidence sampling for …


An Ensemble Learning Framework For Anomaly Detection In Building Energy Consumption, Daniel B. Araya, Katarina Grolinger, Hany F. Elyamany, Miriam Am Capretz, Girma T. Bitsuamlak Jan 2017

An Ensemble Learning Framework For Anomaly Detection In Building Energy Consumption, Daniel B. Araya, Katarina Grolinger, Hany F. Elyamany, Miriam Am Capretz, Girma T. Bitsuamlak

Electrical and Computer Engineering Publications

During building operation, a significant amount of energy is wasted due to equipment and human-related faults. To reduce waste, today's smart buildings monitor energy usage with the aim of identifying abnormal consumption behaviour and notifying the building manager to implement appropriate energy-saving procedures. To this end, this research proposes a new pattern-based anomaly classifier, the collective contextual anomaly detection using sliding window (CCAD-SW) framework. The CCAD-SW framework identifies anomalous consumption patterns using overlapping sliding windows. To enhance the anomaly detection capacity of the CCAD-SW, this research also proposes the ensemble anomaly detection (EAD) framework. The EAD is a generic framework …