Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Quantum Physics

High-Performance Computing In Covariant Loop Quantum Gravity, Pietropaolo Frisoni Dec 2023

High-Performance Computing In Covariant Loop Quantum Gravity, Pietropaolo Frisoni

Electronic Thesis and Dissertation Repository

This Ph.D. thesis presents a compilation of the scientific papers I published over the last three years during my Ph.D. in loop quantum gravity (LQG). First, we comprehensively introduce spinfoam calculations with a practical pedagogical paper. We highlight LQG's unique features and mathematical formalism and emphasize the computational complexities associated with its calculations. The subsequent articles delve into specific aspects of employing high-performance computing (HPC) in LQG research. We discuss the results obtained by applying numerical methods to studying spinfoams' infrared divergences, or ``bubbles''. This research direction is crucial to define the continuum limit of LQG properly. We investigate the …


Fundamental Awareness: A Framework For Integrating Science, Philosophy And Metaphysics, Neil D. Theise, Menas Kafatos May 2016

Fundamental Awareness: A Framework For Integrating Science, Philosophy And Metaphysics, Neil D. Theise, Menas Kafatos

Mathematics, Physics, and Computer Science Faculty Articles and Research

The ontologic framework of Fundamental Awareness proposed here assumes that non-dual Awareness is foundational to the universe, not arising from the interactions or structures of higher level phenomena. The framework allows comparison and integration of views from the three investigative domains concerned with understanding the nature of consciousness: science, philosophy, and metaphysics. In this framework, Awareness is the underlying reality, not reducible to anything else. Awareness and existence are the same. As such, the universe is non-material, self-organizing throughout, a holarchy of complementary, process driven, recursive interactions. The universe is both its own first observer and subject. Considering the world …


The Fine-Tuning Of Nomic Behavior In Multiverse Scenarios, Max Lewis Edward Andrews May 2013

The Fine-Tuning Of Nomic Behavior In Multiverse Scenarios, Max Lewis Edward Andrews

Masters Theses

The multiverse hypothesis (the view that there is not just one world or universe in existence, bur rather that there are many) is the leading alternative to the competing fine-tuning hypothesis (the laws of physics and constants are fine-tuned for the existence of life). The multiverse dispels many aspects of the fine-tuning argument by suggesting that there are different initial conditions in each universe, varying constants of physics, and the laws of nature lose their known arbitrary values; thus, making the previous single-universe argument from fine- tuning incredibly weak. The position that will be advocated will be that a form …


Essentials Of The Theory Of Abstraction - Lecture, Subhajit Kumar Ganguly Jan 2012

Essentials Of The Theory Of Abstraction - Lecture, Subhajit Kumar Ganguly

Subhajit Kumar Ganguly

In not favouring solutions or sets of solutions, the principle of zero-postulation drives away any unwanted incompleteness from the description of the world. It is the interactions between the possible exhaustive set of solutions that creates the impression pointedness or directiveness in the universe, leading to the formation of clusters, as discussed earlier. These interactions may be chaotic in nature, giving rise to attractor points where the directiveness inside any given system asymptotically seem to approach. It is this directiveness, in turn, inside a given system or in the universe as a whole, that is the cause of all known …


Everything Is Entangled, Roman V. Buniy, Stephen D. H. Hsu Jan 2012

Everything Is Entangled, Roman V. Buniy, Stephen D. H. Hsu

Mathematics, Physics, and Computer Science Faculty Articles and Research

We show that big bang cosmology implies a high degree of entanglement of particles in the universe. In fact, a typical particle is entangled with many particles far outside our horizon. However, the entanglement is spread nearly uniformly so that two randomly chosen particles are unlikely to be directly entangled with each other - the reduced density matrix describing any pair is likely to be separable.


Hamiltonian Dynamics In The Theory Of Abstraction, Subhajit Kumar Ganguly Jan 2011

Hamiltonian Dynamics In The Theory Of Abstraction, Subhajit Kumar Ganguly

Subhajit Kumar Ganguly

This paper deals with fluid flow dynamics which may be Hamiltonian in nature and yet chaotic.Here we deal with sympletic invariance, canonical transformations and stability of such Hamiltonian flows. As a collection of points move along, it carries along and distorts its own neighbourhood. This in turn affects the stability of such flows.


Energy Landscape Of D -Dimensional Q -Balls, Marcelo Gleiser, Joel Thorarinson Mar 2006

Energy Landscape Of D -Dimensional Q -Balls, Marcelo Gleiser, Joel Thorarinson

Dartmouth Scholarship

We investigate the properties of Q-balls in d spatial dimensions. First, a generalized virial relation for these objects is obtained. We then focus on potentials V(ϕϕ†)=∑3n=1an(ϕϕ†)n, where an is a constant and n is an integer, obtaining variational estimates for their energies for arbitrary charge Q. These analytical estimates are contrasted with numerical results and their accuracy evaluated. Based on the results, we offer a simple criterion to classify large and small d-dimensional Q-balls for this class of potentials. A minimum charge is then computed and its dependence on spatial dimensionality is shown to scale as Qmin∼exp(d). We also briefly …


A First Principles Warm Inflation Model That Solves The Cosmological Horizon And Flatness Problems, Arjun Berera, Marcelo Gleiser, Rudnei O. Ramos Jul 1999

A First Principles Warm Inflation Model That Solves The Cosmological Horizon And Flatness Problems, Arjun Berera, Marcelo Gleiser, Rudnei O. Ramos

Dartmouth Scholarship

A quantum field theory warm inflation model is presented that solves the horizon and flatness problems. The model obtains, from the elementary dynamics of particle physics, cosmological scale factor trajectories that begin in a radiation dominated regime, enter an inflationary regime, and then smoothly exit back into a radiation dominated regime, with non-negligible radiation throughout the evolution.


Strong Dissipative Behavior In Quantum Field Theory, Arjun Berera, Marcelo Gleiser, Rudnei O. Ramos Nov 1998

Strong Dissipative Behavior In Quantum Field Theory, Arjun Berera, Marcelo Gleiser, Rudnei O. Ramos

Dartmouth Scholarship

We study the conditions under which an overdamped regime can be attained in the dynamic evolution of a quantum field configuration. Using a real-time formulation of finite temperature field theory, we compute the effective evolution equation of a scalar field configuration, quadratically interacting with a given set of other scalar fields. We then show that, in the overdamped regime, the dissipative kernel in the field equation of motion is closely related to the shear viscosity coefficient, as computed in scalar field theory at finite temperature. The effective dynamics is equivalent to a time-dependent Ginzburg-Landau description of the approach to equilibrium …