Open Access. Powered by Scholars. Published by Universities.®

Plasma and Beam Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Laser wakefield acceleration (numerical support of the experiment)

Articles 1 - 7 of 7

Full-Text Articles in Plasma and Beam Physics

Physical Processes At Work In Sub-30fs, Pw Laser Pulse-Driven Plasma Accelerators: Towards Gev Electron Acceleration Experiments At Cilex Facility., Arnaud Beck, Serge Y. Kalmykov, Xavier Davoine, Agustin F. Lifschitz, Bradley A. Shadwick, Victor Malka, Arnd E. Specka Feb 2014

Physical Processes At Work In Sub-30fs, Pw Laser Pulse-Driven Plasma Accelerators: Towards Gev Electron Acceleration Experiments At Cilex Facility., Arnaud Beck, Serge Y. Kalmykov, Xavier Davoine, Agustin F. Lifschitz, Bradley A. Shadwick, Victor Malka, Arnd E. Specka

Serge Youri Kalmykov

Optimal regimes and physical processes at work are identified for the first round of laser wakefield acceleration experiments proposed at a future CILEX facility. The Apollon-10P CILEX laser, delivering fully compressed, near-PW-power pulses of sub-25 fs duration, is well suited for driving electron density wakes in the blowout regime in cm-length gas targets. Early destruction of the pulse (partly due to energy depletion)prevents electrons from reaching dephasing, limiting the energy gain to about 3 GeV. However, the optimal operating regimes, found with reduced and full three-dimensional particle-in-cell simulations, show high energy efficiency, with about 10%of incident pulse energy transferred to …


Stable, Tunable, Quasimonoenergetic Electron Beams Produced In A Laser Wakefield Near The Threshold For Self-Injection, Sudeep Banerjee, Serguei Y. Kalmykov, Nathan D. Powers, Gregory Golovin, Vidiya Ramanathan, Nathan J. Cunningham, Kevin J. Brown, Shouyuan Chen, Isaac Ghebregziabher, Bradley A. Shadwick, Donald P. Umstadter, Benjamin A. Cowan, David L. Bruhwiler, Arnaud Beck, Erik Lefebvre Mar 2013

Stable, Tunable, Quasimonoenergetic Electron Beams Produced In A Laser Wakefield Near The Threshold For Self-Injection, Sudeep Banerjee, Serguei Y. Kalmykov, Nathan D. Powers, Gregory Golovin, Vidiya Ramanathan, Nathan J. Cunningham, Kevin J. Brown, Shouyuan Chen, Isaac Ghebregziabher, Bradley A. Shadwick, Donald P. Umstadter, Benjamin A. Cowan, David L. Bruhwiler, Arnaud Beck, Erik Lefebvre

Donald P. Umstadter

Stable operation of a laser-plasma accelerator near the threshold for electron self-injection in the blowout regime has been demonstrated with 25–60 TW, 30 fs laser pulses focused into a 3–4 millimeter length gas jet. Nearly Gaussian shape and high nanosecond contrast of the focused pulse appear to be critically important for controllable, tunable generation of 250–430 MeV electron bunches with a low energy spread, ~ 10 pC charge, a few-mrad divergence and pointing stability, and a vanishingly small low-energy background. The physical nature of the near-threshold behavior is examined using three-dimensional particle-in-cell simulations. Simulations indicate that properly locating the nonlinear …


Stable, Tunable, Quasimonoenergetic Electron Beams Produced In A Laser Wakefield Near The Threshold For Self-Injection, Sudeep Banerjee, Serguei Y. Kalmykov, Nathan D. Powers, Gregory Golovin, Vidiya Ramanathan, Nathan J. Cunningham, Kevin J. Brown, Shouyuan Chen, Isaac Ghebregziabher, Bradley A. Shadwick, Donald P. Umstadter, Benjamin A. Cowan, David L. Bruhwiler, Arnaud Beck, Erik Lefebvre Mar 2013

Stable, Tunable, Quasimonoenergetic Electron Beams Produced In A Laser Wakefield Near The Threshold For Self-Injection, Sudeep Banerjee, Serguei Y. Kalmykov, Nathan D. Powers, Gregory Golovin, Vidiya Ramanathan, Nathan J. Cunningham, Kevin J. Brown, Shouyuan Chen, Isaac Ghebregziabher, Bradley A. Shadwick, Donald P. Umstadter, Benjamin A. Cowan, David L. Bruhwiler, Arnaud Beck, Erik Lefebvre

Serge Youri Kalmykov

Stable operation of a laser-plasma accelerator near the threshold for electron self-injection in the blowout regime has been demonstrated with 25–60 TW, 30 fs laser pulses focused into a 3–4 millimeter length gas jet. Nearly Gaussian shape and high nanosecond contrast of the focused pulse appear to be critically important for controllable, tunable generation of 250–430 MeV electron bunches with a low energy spread, ~ 10 pC charge, a few-mrad divergence and pointing stability, and a vanishingly small low-energy background. The physical nature of the near-threshold behavior is examined using three-dimensional particle-in-cell simulations. Simulations indicate that properly locating the nonlinear …


Petawatt-Laser-Driven Wakefield Acceleration Of Electrons To 2 Gev In 10^{17} Cm^{-3} Plasma, Xiaoming Wang, Rafal B. Zgadzaj, Neil Fazel, Sunghwan A. Yi, X. Zhang, Watson Henderson, Yen-Yu Zhang, Rick Korzekwa, Hai-En Tsai, C.-H. Pai, Zhengyan Li, Hernan Quevedo, Gilliss Dyer, Erhard W. Gaul, Mikael Martinez, Aaron Bernstein, Ted Borger, M. Spinks, M. Donovan, Serguei Y. Kalmykov, Vladimir N. Khudik, Gennady Shvets, Todd Ditmire, Michael C. Downer Dec 2012

Petawatt-Laser-Driven Wakefield Acceleration Of Electrons To 2 Gev In 10^{17} Cm^{-3} Plasma, Xiaoming Wang, Rafal B. Zgadzaj, Neil Fazel, Sunghwan A. Yi, X. Zhang, Watson Henderson, Yen-Yu Zhang, Rick Korzekwa, Hai-En Tsai, C.-H. Pai, Zhengyan Li, Hernan Quevedo, Gilliss Dyer, Erhard W. Gaul, Mikael Martinez, Aaron Bernstein, Ted Borger, M. Spinks, M. Donovan, Serguei Y. Kalmykov, Vladimir N. Khudik, Gennady Shvets, Todd Ditmire, Michael C. Downer

Serge Youri Kalmykov

Electron self-injection into a laser-plasma accelerator (LPA) driven by the Texas Petawatt (TPW) laser is reported at plasma densities 1.7 - 6.2 x 10^{17} cm^{-3}. Energy and charge of the electron beam, ranging from 0.5 GeV to 2 GeV and tens to hundreds of pC, respectively, depended strongly on laser beam quality and plasma density. Angular beam divergence was consistently around 0.5 mrad (FWHM), while shot-to-shot pointing fluctuations were limited to ±1.4 mrad rms. Betatron x-rays with tens of keV photon energy are also clearly observed.


Generation Of Tunable, 100–800 Mev Quasi-Monoenergetic Electron Beams From A Laser-Wakefield Accelerator In The Blowout Regime, Sudeep Banerjee, Nathan D. Powers, Vidiya Ramanathan, Isaac Ghebregziabher, Kevin J. Brown, Chakra M. Maharjan, Shouyuan Chen, Arnaud Beck, Erik Lefebvre, Serguei Y. Kalmykov, Bradley A. Shadwick, Donald P. Umstadter Apr 2012

Generation Of Tunable, 100–800 Mev Quasi-Monoenergetic Electron Beams From A Laser-Wakefield Accelerator In The Blowout Regime, Sudeep Banerjee, Nathan D. Powers, Vidiya Ramanathan, Isaac Ghebregziabher, Kevin J. Brown, Chakra M. Maharjan, Shouyuan Chen, Arnaud Beck, Erik Lefebvre, Serguei Y. Kalmykov, Bradley A. Shadwick, Donald P. Umstadter

Donald P. Umstadter

In this paper, we present results on a scalable high-energy electron source based on laser wakefield acceleration. The electron accelerator using 30 - 80 TW, 30 fs laser pulses, operates in the blowout regime, and produces high-quality, quasi-monoenergetic electron beams in the range 100 - 800 MeV. These beams have angular divergence of 1 - 4 mrad, and 5 - 25 percent energy spread, with a resulting brightness 10^{11} electrons mm^{-2} MeV^{-1} mrad^{-2}. The beam parameters can be tuned by varying the laser and plasma conditions. The use of a high-quality laser pulse and appropriate target conditions enables optimization of …


Generation Of Tunable, 100–800 Mev Quasi-Monoenergetic Electron Beams From A Laser-Wakefield Accelerator In The Blowout Regime, Sudeep Banerjee, Nathan D. Powers, Vidiya Ramanathan, Isaac Ghebregziabher, Kevin J. Brown, Chakra M. Maharjan, Shouyuan Chen, Arnaud Beck, Erik Lefebvre, Serguei Y. Kalmykov, Bradley A. Shadwick, Donald P. Umstadter Apr 2012

Generation Of Tunable, 100–800 Mev Quasi-Monoenergetic Electron Beams From A Laser-Wakefield Accelerator In The Blowout Regime, Sudeep Banerjee, Nathan D. Powers, Vidiya Ramanathan, Isaac Ghebregziabher, Kevin J. Brown, Chakra M. Maharjan, Shouyuan Chen, Arnaud Beck, Erik Lefebvre, Serguei Y. Kalmykov, Bradley A. Shadwick, Donald P. Umstadter

Serge Youri Kalmykov

In this paper, we present results on a scalable high-energy electron source based on laser wakefield acceleration. The electron accelerator using 30 - 80 TW, 30 fs laser pulses, operates in the blowout regime, and produces high-quality, quasi-monoenergetic electron beams in the range 100 - 800 MeV. These beams have angular divergence of 1 - 4 mrad, and 5 - 25 percent energy spread, with a resulting brightness 10^{11} electrons mm^{-2} MeV^{-1} mrad^{-2}. The beam parameters can be tuned by varying the laser and plasma conditions. The use of a high-quality laser pulse and appropriate target conditions enables optimization of …


Numerical Modelling Of A 10-Cm-Long Multi-Gev Laser Wakefield Accelerator Driven By A Self-Guided Petawatt Pulse, Serguei Y. Kalmykov, Sunghwan A. Yi, Arnaud Beck, Agustin F. Lifschitz, Xavier Davoine, Erik Lefebvre, Alexander Pukhov, Vladimir N. Khudik, Gennady Shvets, Steven A. Reed, Peng Dong, Xiaoming Wang, Dongsu Du, Stefan Bedacht, Rafal B. Zgadzaj, Watson Henderson, Aaron Bernstein, Gilliss Dyer, Mikael Martinez, Erhard Gaul, Todd Ditmire, Michael C. Downer Apr 2010

Numerical Modelling Of A 10-Cm-Long Multi-Gev Laser Wakefield Accelerator Driven By A Self-Guided Petawatt Pulse, Serguei Y. Kalmykov, Sunghwan A. Yi, Arnaud Beck, Agustin F. Lifschitz, Xavier Davoine, Erik Lefebvre, Alexander Pukhov, Vladimir N. Khudik, Gennady Shvets, Steven A. Reed, Peng Dong, Xiaoming Wang, Dongsu Du, Stefan Bedacht, Rafal B. Zgadzaj, Watson Henderson, Aaron Bernstein, Gilliss Dyer, Mikael Martinez, Erhard Gaul, Todd Ditmire, Michael C. Downer

Serge Youri Kalmykov

The use of a short-pulse petawatt (PW) laser (sub-200 fs duration, ~ 1 micron wavelength) enables experimental realization of a self-guided, multicentimetre-long multi-GeV laser wakefield electron accelerator. A comprehensive set of numerical simulations showed that a 150 fs, 1.33 PW pulse is self- guided over 10 cm of a static filling gaseous plasma of density 1–3 x 10^{17} cm^{−3} and is stable against relativistic filamentation. A fully broken electromagnetic wake (electron density ‘bubble’) is excited over the entire interaction length. Variations of bubble size and shape associated with nonlinear evolution of the driving pulse result in self-injection of background plasma …