Open Access. Powered by Scholars. Published by Universities.®

Optics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Optics

Single-Stage Few-Cycle Pulse Amplification, Sagnik Ghosh, Nathan G. Drouillard, Tj Hammond Jan 2024

Single-Stage Few-Cycle Pulse Amplification, Sagnik Ghosh, Nathan G. Drouillard, Tj Hammond

Physics Publications

Kerr instability can be exploited to amplify visible, near-infrared, and midinfrared ultrashort pulses. We use the results of Kerr instability amplification theory to inform our simulations amplifying few-cycle pulses. We show that the amplification angle dependence is simplified to the phase-matching condition of four-wave mixing when the intense pump is considered. Seeding with few-cycle pulses near the pump leads to broadband amplification without spatial chirp, while longer pulses undergo compression through amplification. Pumping in the midinfrared leads to multioctave spanning amplified pulses with single-cycle duration not previously predicted. We discuss limitations of the amplification process and optimizing pump and seed …


Control Of Nonlinear Properties Of Van Der Waals Materials, Rezlind Bushati Sep 2022

Control Of Nonlinear Properties Of Van Der Waals Materials, Rezlind Bushati

Dissertations, Theses, and Capstone Projects

Van der Waals materials are a broad class of materials that exhibit unique optoelectronic properties. They provide a rich playground for which they can be integrated into current on-chip devices due to their nanometer-scale size, and be utilized for studying fundamental physics. Strong coupling of emitters to microcavities provides many opportunities for new exotic physics through the formation of hybrid quasi-particles exciton-polaritons. This thesis
focuses on exploring and enhancing nonlinearity of van der Waals materials through strongly coupling to microcavities. By taking advantage of the stacking order of TMDs, we show intense second-harmonic generation from bulk, centrosymmetric TMD systems. In …


A Study Of Optical Nonlinearities At The Single-Photon Level For Quantum Logic, Balakrishnan Viswanathan May 2020

A Study Of Optical Nonlinearities At The Single-Photon Level For Quantum Logic, Balakrishnan Viswanathan

Graduate Theses and Dissertations

In this dissertation, we shall focus on theoretically studying quantum nonlinear optical schemes to construct a conditional phase gate at the single-photon level. With an aim to develop analytical models, we shall carry out a rigorous quantized multimode field analysis of some of these schemes involving only the interacting field operators. More specifically, we shall first study the three-wave mixing process involving two single-photons in a second-order nonlinear medium (x(2)) under two different cases viz. when the photons are traveling with equal velocities and when they are traveling with different velocities, and explore the possibility of using them for building …


Phase Control In Atomic Coherence, Utsab Khadka Aug 2012

Phase Control In Atomic Coherence, Utsab Khadka

Graduate Theses and Dissertations

In this thesis, atomic coherence is used to enhance nonlinear optical processes in multi-level atoms. The multi-photon transitions are driven resonantly, and at the same time without absorptive losses, by using electromagnetically induced transparency (EIT), thereby allowing the study of χ(3) and χ(5) nonlinearities using weak driving fields. The coherently modified probe beam(s) and the atom-radiated signal fields arising from four- and six- wave- mixing (FWM and SWM) processes are measured in the spectral, temporal and spatial domains.

In a three-level ladder-type atomic system, multiple peaks having spectral asymmetries are observed in the EIT window as well as …