Open Access. Powered by Scholars. Published by Universities.®

Optics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Optics

Photopolymer Material Durability And Safety In Holographic Diffusers For Visual Applications, Matthew Hellis, Alan Casey, Edoardo Splendi, Suzanne Martin, Matthew Sheehan, Kevin Murphy Jun 2024

Photopolymer Material Durability And Safety In Holographic Diffusers For Visual Applications, Matthew Hellis, Alan Casey, Edoardo Splendi, Suzanne Martin, Matthew Sheehan, Kevin Murphy

Articles

This study introduces novel holographic diffuser applications employing acrylamide- or diacetone acrylamide-based photopolymers, patterned within the volume on a micron scale by a single-beam holographic recording process. These diffusers have previously been presented as potential treatments for amblyopia and diplopia. This work has now been extended to spectrometric analysis to determine their properties under broadband light. Diffusive elements with higher diffusion efficiencies exhibited a marginal reduction (< 5%) in diffusion efficiency across most of the visible spectrum. Given the intended application of these holographic diffusers, cytotoxicity assessments were also performed. This is significant as there is a difference in toxicity between the crystalline acrylamide (classified as a category 3 material) and diacetone acrylamide (classified as a category 4 material). The findings indicated substantially lower toxicity in holograms produced with diacetone acrylamide-based photopolymer. The accelerated ageing of both formulations of holographic diffusers indicated that the acrylamide-based holographic diffusers did not reduce efficacy in the 292 days of ageing. The diacetone acrylamide-based holographic diffusers exhibited reduced efficacy by day 182. Despite this, both formulations have been shown to perform for prolonged periods as the treatment modality would require. These results emphasise that holographic diffusers exhibit minimal spectral impact, and longevity on the scale of treatment regimes which are crucial considerations for their prospective use case as treatments for amblyopia and diplopia.


Investigation Of The Uv-Resistance Of Photopolymerisable Glass For Space Applications, Luca Sorridente, Tatsiana Mikulchyk, Izabela Naydenova, Kevin Murphy Jun 2024

Investigation Of The Uv-Resistance Of Photopolymerisable Glass For Space Applications, Luca Sorridente, Tatsiana Mikulchyk, Izabela Naydenova, Kevin Murphy

Articles

The progress of space based scientific research leads to an increasing demand for more efficient and less bulky instruments. Conventional refractive elements make up a critical part of many optical instruments launched into space; however, they can be bulky and heavy. Holographic optical elements are an efficient alternative to replace the conventional optical elements as they are lightweight and can be miniaturized. Current materials typically used for volume holographic optical elements are not robust enough for use in space environment. Recently a promising photopolymerisable glass has been developed using a sol-gel technique, which can provide dry layers suitable for holographic …


Holographic Multiplexing In A Photopolymerisable Hybrid Sol-Gel, Pamela Stoeva, Tatsiana Mikulchyk, Izabela Naydenova, Kevin Murphy May 2024

Holographic Multiplexing In A Photopolymerisable Hybrid Sol-Gel, Pamela Stoeva, Tatsiana Mikulchyk, Izabela Naydenova, Kevin Murphy

Articles

Holographic multiplexing techniques enhance functionality and information storage by leveraging the inherent selectivity of holograms. This is crucial for advancing holographic sensors, which excel in simultaneously detecting multiple parameters from a single input signal. This study explores the potential of the recent photopolymerisable hybrid sol-gel (PHSG) material for application in Space sensing systems through the investigation of its holographic angular multiplexing capabilities. For the first time, to the best of our knowledge, we report the successful recording of up to five angularly multiplexed gratings with diffraction efficiencies (DE) ≥ 15% in 187 ± 18 µm PHSG layers. A 3 mW/cm2 …


Color-Changing Reflection Hologram For Quality Assurance Of Therapeutic Ultrasound Systems, Tatsiana Mikulchyk, John Walsh, Jacinta Browne, Izabela Naydenova, Dervil Cody Jan 2023

Color-Changing Reflection Hologram For Quality Assurance Of Therapeutic Ultrasound Systems, Tatsiana Mikulchyk, John Walsh, Jacinta Browne, Izabela Naydenova, Dervil Cody

Articles

The acoustic output of clinical therapeutic ultrasound equipment requires regular quality assurance (QA) testing to ensure the safety and efficacy of the treatment and that any potentially harmful deviations from the expected output power density are detected as soon as possible. A hologram, consisting of a reflection grating fabricated in an acrylate photopolymer film, has been developed to produce an immediate, visible, and permanent change in the color of the reconstructed hologram from red to green in response to incident ultrasound energy. The influence of the therapeutic ultrasound insonation parameters (exposure time, ultrasound power density, and proximity to the point …


Limits Of Detection Of Mycotoxins By Laminar Flow Strips: A Review, Xinyi Zhao, Hugh Byrne, Christine M. O’Connor, James Curtin, Furong Tian Apr 2022

Limits Of Detection Of Mycotoxins By Laminar Flow Strips: A Review, Xinyi Zhao, Hugh Byrne, Christine M. O’Connor, James Curtin, Furong Tian

Articles

Mycotoxins are secondary metabolic products of fungi. They are poisonous, carcinogenic, and mutagenic in nature and pose a serious health threat to both humans and animals, causing severe illnesses and even death. Rapid, simple and low-cost methods of detection of mycotoxins are of immense importance and in great demand in the food and beverage industry, as well as in agriculture and environmental monitoring, and, for this purpose, lateral flow immunochromatographic strips (ICSTs) have been widely used in food safety and environmental monitoring. The literature to date describing the development of ICSTs for the detection of different types of mycotoxins using …


Determination Of The Polymerisation Rate Of A Low-Toxicity Diacetone Acrylamide-Based Holographic Photopolymer Using Raman Spectroscopy, Dervil Cody, Emilia Mihaylova, Luke O'Neill, Izabela Naydenova Oct 2015

Determination Of The Polymerisation Rate Of A Low-Toxicity Diacetone Acrylamide-Based Holographic Photopolymer Using Raman Spectroscopy, Dervil Cody, Emilia Mihaylova, Luke O'Neill, Izabela Naydenova

Articles

The polymerisation rate of a low-toxicity Diacetone Acrylamide (DA)-based photopolymer has been measured for the first time using Raman spectroscopy. A value for the polymerisation rate of 0.020 s−1 has been obtained for the DA photopolymer by modelling the polymerisation reaction dynamics as a stretched exponential or Kohlrausch decay function. This is significantly lower than the polymerisation rate of 0.100 s−1 measured for the well known Acrylamide (AA)-based photopolymer composition. The effect of the additive glycerol on the polymerisation rate of the DA-based photopolymer has also been investigated. The inclusion of glycerol is observed to increase the rate …


Real-Time Plasma Controlled Chemistry In A Two-Frequency, Confined Plasma Etcher, Vladimir Milosavljevic, Albert R. Ellingboe, Cezar Gaman, John V. Ringwood Apr 2008

Real-Time Plasma Controlled Chemistry In A Two-Frequency, Confined Plasma Etcher, Vladimir Milosavljevic, Albert R. Ellingboe, Cezar Gaman, John V. Ringwood

Articles

The physics issues of developing model-based control of plasma etching are presented. A novel methodology for incorporating real-time model-based control of plasma processing systems is developed. The methodology is developed for control of two dependent variables (ion flux and chemical densities) by two independent controls (27 MHz power and O2flow). A phenomenological physics model of the nonlinear coupling between the independent controls and the dependent variables of the plasma is presented. By using a design of experiment, the functional dependencies of the response surface are determined. In conjunction with the physical model, the dependencies are used to deconvolve the sensor …