Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physics

The Astrophysics Of Nanohertz Gravitational Waves, S. Burke-Spolaor, S. R. Taylor, M. Charisi, T. Dolch, J. S. Hazboun, A. M. Holgado, L. Z. Kelley, T. J. W. Lazio, D. R. Madison, N. Mcmann, C. M. F. Mingarelli, A. Rasskazov, X. Siemens, J. J. Simon, Tristan L. Smith Dec 2019

The Astrophysics Of Nanohertz Gravitational Waves, S. Burke-Spolaor, S. R. Taylor, M. Charisi, T. Dolch, J. S. Hazboun, A. M. Holgado, L. Z. Kelley, T. J. W. Lazio, D. R. Madison, N. Mcmann, C. M. F. Mingarelli, A. Rasskazov, X. Siemens, J. J. Simon, Tristan L. Smith

Physics & Astronomy Faculty Works

Pulsar timing array (PTA) collaborations in North America, Australia, and Europe, have been exploiting the exquisite timing precision of millisecond pulsars over decades of observations to search for correlated timing deviations induced by gravitational waves (GWs). PTAs are sensitive to the frequency band ranging just below 1 nanohertz to a few tens of microhertz. The discovery space of this band is potentially rich with populations of inspiraling supermassive black hole binaries, decaying cosmic string networks, relic post-inflation GWs, and even non-GW imprints of axionic dark matter. This article aims to provide an understanding of the exciting open science questions in …


High Power And Optomechanics In Advanced Ligo Detectors, Terra Christine Hardwick Nov 2019

High Power And Optomechanics In Advanced Ligo Detectors, Terra Christine Hardwick

LSU Doctoral Dissertations

In September 2015, a new era of astronomy began with the first direct detection of grav- itational waves from a binary black hole coalescence. The event was captured by the Laser Interferometer Gravitational-wave Observatory, comprised of two long-baseline interferometers, one in Livingston, LA and one in Hanford, WA. At the time of the first detection, the interferometers were part way through an upgrade to an advanced configuration and were operating with a strain sensitivity of just better than 10−23/Hz1/2 around 100Hz. The full Advanced LIGO design calls for sensitivity of a few parts in 10−24/Hz …


Hasasia: A Python Package For Pulsar Timing Array Sensitivity Curves, J. S. Hazboun, J. D. Romano, Tristan L. Smith Oct 2019

Hasasia: A Python Package For Pulsar Timing Array Sensitivity Curves, J. S. Hazboun, J. D. Romano, Tristan L. Smith

Physics & Astronomy Faculty Works

No abstract provided.


Binary Black Hole Population Properties Inferred From The First And Second Observing Runs Of Advanced Ligo And Advanced Virgo, B. P. Abbott, T. D. Abbott, S. Abraham, Teviet Creighton, Mario C. Diaz, Soma Mukherjee, Volker Quetschke, Malik Rakhmanov, Karla E. Ramirez, Satzhan Sitmukhambetov, D. Tuyenbayev, W. H. Wang, Adam Zadrozny Sep 2019

Binary Black Hole Population Properties Inferred From The First And Second Observing Runs Of Advanced Ligo And Advanced Virgo, B. P. Abbott, T. D. Abbott, S. Abraham, Teviet Creighton, Mario C. Diaz, Soma Mukherjee, Volker Quetschke, Malik Rakhmanov, Karla E. Ramirez, Satzhan Sitmukhambetov, D. Tuyenbayev, W. H. Wang, Adam Zadrozny

Physics and Astronomy Faculty Publications and Presentations

We present results on the mass, spin, and redshift distributions with phenomenological population models using the 10 binary black hole (BBH) mergers detected in the first and second observing runs completed by Advanced LIGO and Advanced Virgo. We constrain properties of the BBH mass spectrum using models with a range of parameterizations of the BBH mass and spin distributions. We find that the mass distribution of the more massive BH in such binaries is well approximated by models with no more than 1% of BHs more massive than 45M(circle dot) and a power-law index of alpha = 1.3(-1.7)(+1.4) (90% credibility). …


The Delay Time Of Gravitational Wave — Gamma-Ray Burst Associations, Bing Zhang Jul 2019

The Delay Time Of Gravitational Wave — Gamma-Ray Burst Associations, Bing Zhang

Physics & Astronomy Faculty Research

The first gravitational wave (GW) — gamma-ray burst (GRB) association, GW170817/GRB 170817A, had an offset in time, with the GRB trigger time delayed by ∼1.7 s with respect to the merger time of the GW signal. We generally discuss the astrophysical origin of the delay time, Δt, of GW-GRB associations within the context of compact binary coalescence (CBC) — short GRB (sGRB) associations and GW burst — long GRB (lGRB) associations. In general, the delay time should include three terms, the time to launch a clean (relativistic) jet, Δtjet; the time for the jet to break out from the surrounding …


Low-Latency Gravitational-Wave Alerts For Multimessenger Astronomy During The Second Advanced Ligo And Virgo Observing Run, B. P. Abbott, R. Abbott, T. D. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Apr 2019

Low-Latency Gravitational-Wave Alerts For Multimessenger Astronomy During The Second Advanced Ligo And Virgo Observing Run, B. P. Abbott, R. Abbott, T. D. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

Advanced LIGO's second observing run (O2), conducted from 2016 November 30 to 2017 August 25, combined with Advanced Virgo's first observations in 2017 August, witnessed the birth of gravitational-wave multimessenger astronomy. The first ever gravitational-wave detection from the coalescence of two neutron stars, GW170817, and its gamma-ray counterpart, GRB 170817A, led to an electromagnetic follow-up of the event at an unprecedented scale. Several teams from across the world searched for EM/neutrino counterparts to GW170817, paving the way for the discovery of optical, X-ray, and radio counterparts. In this article, we describe the online identification of gravitational-wave transients and the distribution …


Ligo Analogy Lab—A Set Of Undergraduate Lab Experiments To Demonstrate Some Principles Of Gravitational Wave Detection, Dennis Ugolini, Hanna Rafferty, M. Winter, C. Rockstuhl, A. Bergmann Jan 2019

Ligo Analogy Lab—A Set Of Undergraduate Lab Experiments To Demonstrate Some Principles Of Gravitational Wave Detection, Dennis Ugolini, Hanna Rafferty, M. Winter, C. Rockstuhl, A. Bergmann

Physics and Astronomy Faculty Research

The first direct detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in September 2015 proved their existence, as predicted by Einstein's General Theory of Relativity, and ushered in the era of gravitational-wave interferometry. In this article, we present a set of lab course experiments at different levels of advancement, which give students insight into the basic LIGO operating principle and advanced detection techniques. Starting with methods for folding an optical cavity, we advance to analogy experiments with sound waves that can be detected with a Michelson interferometer with an optical cavity arm. In that experiment, students also …


Various Paths To The Spontaneous Growth Of $P$-Form Fields, Fethi̇ Mübi̇n Ramazanoğlu Jan 2019

Various Paths To The Spontaneous Growth Of $P$-Form Fields, Fethi̇ Mübi̇n Ramazanoğlu

Turkish Journal of Physics

We show that $p$-form fields can go through spontaneous growth due to various couplings in gravity theories, forming a new example of spontaneous tensorization. Generalizing the spontaneous scalarization theory of Damour and Esposito-Farèse where the original idea has been applied to different fields from vectors to spinors has received high levels of interest in recent years. We first review this existing literature on spontaneous growth in gravity, and then apply the known mechanisms to $p$-forms. We show that one can induce spontaneous growth in $p$-forms for each of the regularized instability mechanisms, which was not the case for other types …


Gravitational Radiation From Superradiant Instabilities Of Rotating Black Holes, Shrobana Ghosh Jan 2019

Gravitational Radiation From Superradiant Instabilities Of Rotating Black Holes, Shrobana Ghosh

Electronic Theses and Dissertations

We use the Teukolsky formalism to calculate the gravitational radiation from a non-axi\-symmetric cloud formed due to superradiant amplification of a spin-0 bosonic field. We focus on the prospects of the future space-based gravitational wave detector, Laser Interferometer Space Antenna (LISA), and the current version of ground-based detector, Advanced Laser Interferometer Gravitational-Wave Observatory (AdLIGO), to detect or constrain scalars with mass in the range $m_s\in [10^{-19},10^{-15}]$ eV and $m_s\in[10^{-14},10^{-11}]$ eV, respectively. Using astrophysical models of black hole populations calibrated to observations we find that, in optimistic scenarios, AdLIGO could detect up to $10^4$ resolvable events in a four-year search if …


Search For Multimessenger Sources Of Gravitational Waves And High-Energy Neutrinos With Advanced Ligo During Its First Observing Run, Antares, And Icecube, A. Albert, M. André, M. Anghinolfi, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Jan 2019

Search For Multimessenger Sources Of Gravitational Waves And High-Energy Neutrinos With Advanced Ligo During Its First Observing Run, Antares, And Icecube, A. Albert, M. André, M. Anghinolfi, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the outflow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the Antares and IceCube neutrino observatories from …


A Fermi Gamma-Ray Burst Monitor Search For Electromagnetic Signals Coincident With Gravitational-Wave Candidates In Advanced Ligo's First Observing Run, E. Burns, A. Goldstein, C. M. Hui, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Jan 2019

A Fermi Gamma-Ray Burst Monitor Search For Electromagnetic Signals Coincident With Gravitational-Wave Candidates In Advanced Ligo's First Observing Run, E. Burns, A. Goldstein, C. M. Hui, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

We present a search for prompt gamma-ray counterparts to compact binary coalescence gravitational wave (GW) candidates from Advanced LIGO's first observing run (O1). As demonstrated by the multimessenger observations of GW170817/GRB 170817A, electromagnetic and GW observations provide complementary information about the astrophysical source, and in the case of weaker candidates, may strengthen the case for an astrophysical origin. Here we investigate low-significance GW candidates from the O1 compact binary coalescence searches using the Fermi Gamma-Ray Burst Monitor (GBM), leveraging its all sky and broad energy coverage. Candidates are ranked and compared to background to measure the significance. Those with false …