Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Technological University Dublin

Fluid dynamics

Articles 1 - 5 of 5

Full-Text Articles in Physics

Fluid-Dynamic Models Of Geophysical Waves, Alan Compelli Jan 2018

Fluid-Dynamic Models Of Geophysical Waves, Alan Compelli

Doctoral

Geophysical waves are waves that are found naturally in the Earth's atmosphere and oceans. Internal waves, that is waves that act as an interface between uids of dierent density, are examples of geophysical waves. A uid system with a at bottom, at surface and internal wave is initially considered. The system has a depth-dependent current which mimics a typical ocean set-up and, as it is based on the surface of the rotating Earth, incorporates Coriolis forces. Using well established uid dynamic techniques, the total energy is calculated and used to determine the dynamics of the system using a procedure called …


Nonaxisymmetric Stokes Flow Between Concentric Cones, O. Hall, C. P. Hills, A. D. Gilbert Jan 2009

Nonaxisymmetric Stokes Flow Between Concentric Cones, O. Hall, C. P. Hills, A. D. Gilbert

Articles

We study the fully three-dimensional Stokes flow within a geometry consisting of two infinite cones with coincident apices. The Stokes approximation is valid near the apex and we consider the dominant flow features as it is approached. The cones are assumed to be stationary and the flow to be driven by an arbitrary far-field disturbance. We express the flow quantities in terms of eigenfunction expansions and allow for the first time for nonaxisymmetric flow regimes through an azimuthal wave number. The eigenvalue problem is solved numerically for successive wave numbers. Both real and complex sequences of eigenvalues are found, their …


Slow Flow Between Concentric Cones, O. Hall, C. P. Hills, A. D. Gilbert Jan 2007

Slow Flow Between Concentric Cones, O. Hall, C. P. Hills, A. D. Gilbert

Articles

This paper considers the low-Reynolds-number flow of an incompressible fluid contained in the gap between two coaxial cones with coincident apices and bounded by a spherical lid. The two cones and the lid are allowed to rotate independently about their common axis, generating a swirling motion. The swirl induces a secondary, meridional circulation through inertial effects. For specific configurations complex eigenmodes representing an infinite sequence of eddies, analogous to those found in two-dimensional corner flows and some three-dimensional geometries, form a component of this secondary circulation. When the cones rotate these eigenmodes, arising from the geometry, compete with the forced …


The Simultaneous Onset And Interaction Of Taylor And Dean Instabilities In A Couette Geometry, C. P. Hills, A. P. Bassom Jan 2005

The Simultaneous Onset And Interaction Of Taylor And Dean Instabilities In A Couette Geometry, C. P. Hills, A. P. Bassom

Articles

The fluid flow between a pair of coaxial circular cylinders generated by the uniform rotation of the inner cylinder and an azimuthal pressure gradient is susceptible to both Taylor and Dean type instabilities. The flow can be characterised by two parameters: a measure of the relative magnitude of the rotation and pressure effects and a non-dimensional Taylor number. Neutral curves associated with each instability can be constructed but it has been suggested that these curves do not cross but rather posses `kinks'. Our work is based in the small gap, large wavenumber limit and considers the simultaneous onset of Taylor …


Flow Patterns In A Two-Roll Mill, Christopher Hills Jan 2002

Flow Patterns In A Two-Roll Mill, Christopher Hills

Articles

The two-dimensional flow of a Newtonian fluid in a rectangular box that contains two disjoint, independently-rotating, circular boundaries is studied. The flow field for this two-roll mill is determined numerically using a finite-difference scheme over a Cartesian grid with variable horizontal and vertical spacing to accommodate satisfactorily the circular boundaries. To make the streamfunction numerically determinate we insist that the pressure field is everywhere single-valued. The physical character, streamline topology and transitions of the flow are discussed for a range of geometries, rotation rates and Reynolds numbers in the underlying seven-parameter space. An account of a preliminary experimental study of …