Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 36

Full-Text Articles in Physics

Low Mach Number Fluctuating Hydrodynamics Of Diffusively Mixing Fluids, Aleksandar Donev, Andy J. Nonaka, Yifei Sun, Thomas Fai, Alejandro Garcia, John B. Bell Jan 2014

Low Mach Number Fluctuating Hydrodynamics Of Diffusively Mixing Fluids, Aleksandar Donev, Andy J. Nonaka, Yifei Sun, Thomas Fai, Alejandro Garcia, John B. Bell

Alejandro Garcia

We formulate low Mach number fluctuating hydrodynamic equations appropriate for modeling diffusive mixing in isothermal mixtures of fluids with different density and transport coefficients. These equations eliminate the fast isentropic fluctuations in pressure associated with the propagation of sound waves by replacing the equation of state with a local thermodynamic constraint. We demonstrate that the low Mach number model preserves the spatio-temporal spectrum of the slower diffusive fluctuations. We develop a strictly conservative finite-volume spatial discretization of the low Mach number fluctuating equations in both two and three dimensions. We construct several explicit Runge-Kutta temporal integrators that strictly maintain the …


Diffusive Transport Enhanced By Thermal Velocity Fluctuations, Alejandro Garcia, Aleksandar Donev, Anton De La Fuente, John B. Bell Jan 2011

Diffusive Transport Enhanced By Thermal Velocity Fluctuations, Alejandro Garcia, Aleksandar Donev, Anton De La Fuente, John B. Bell

Alejandro Garcia

We study the contribution of advection by thermal velocity fluctuations to the effective diffusion coefficient in a mixture of two identical fluids. We find good agreement between a simple fluctuating hydrodynamics theory and particle and finite-volume simulations. The enhancement of the diffusive transport depends on the system size L and grows as ln⁡(L/L0) in quasi-two-dimensional systems, while in three dimensions it scales as L0-1-L-1, where L0 is a reference length. Our results demonstrate that fluctuations play an important role in the hydrodynamics of small-scale systems.


Observation Of A Red-Blue Detuning Asymmetry In Matter-Wave Superradiance, L. Deng, E. W. Hagley, Qiang Cao, Xiaorui Wang, Xinyu Luo, Ruquan Wang, Marvin G. Payne, Fan Yang, Xiaoji Chen, Mingsheng Zhan Nov 2010

Observation Of A Red-Blue Detuning Asymmetry In Matter-Wave Superradiance, L. Deng, E. W. Hagley, Qiang Cao, Xiaorui Wang, Xinyu Luo, Ruquan Wang, Marvin G. Payne, Fan Yang, Xiaoji Chen, Mingsheng Zhan

Marvin G. Payne

We report the first experimental observation of strong suppression of matter-wave superradiance using blue-detuned pump light and demonstrate a pump-laser detuning asymmetry in the collective atomic recoil motion. In contrast to all previous theoretical frameworks, which predict that the process should be symmetric with respect to the sign of the detuning of the pump laser from the one-photon resonance, we find that for condensates the symmetry is broken. With high condensate densities and red-detuned pump light the distinctive multiorder, matter-wave scattering pattern is clearly visible, whereas with blue-detuned pump light superradiance is strongly suppressed. However, in the limit of a …


Electromagnetic Wave Dynamics In Matter-Wave Superradiant Scattering, Marvin G. Payne, Lu Deng, Edward G. Hagley Feb 2010

Electromagnetic Wave Dynamics In Matter-Wave Superradiant Scattering, Marvin G. Payne, Lu Deng, Edward G. Hagley

Marvin G. Payne

We present a small-signal wave propagation theory on matter-wave superradiant scattering. We show, in a longitudinally excited condensate, that the backward-propagating, superradiantly generated optical field propagates with ultraslow group velocity and that the small-signal gain profile has a Bragg resonance. We further show a unidirectional suppression of optical superradiant scattering, and explain why matter-wave superradiance can occur only when the pump laser is red detuned. This is the first analytical theory on field propagation in matter-wave superradiance that can explain all matter-wave superradiance experiments to date that used a single-frequency, long-pulse, red-detuned laser.


Computational Fluctuating Fluid Dynamics, Alejandro Garcia, John B. Bell, Sarah Williams Jan 2010

Computational Fluctuating Fluid Dynamics, Alejandro Garcia, John B. Bell, Sarah Williams

Alejandro Garcia

This paper describes the extension of a recently developed numerical solver for the Landau-Lifshitz Navier-Stokes (LLNS) equations to binary mixtures in three dimensions. The LLNS equations incorporate thermal fluctuations into macroscopic hydrodynamics by using white-noise fluxes. These stochastic PDEs are more complicated in three dimensions due to the tensorial form of the correlations for the stochastic fluxes and in mixtures due to couplings of energy and concentration fluxes (e.g., Soret effect). We present various numerical tests of systems in and out of equilibrium, including time-dependent systems, and demonstrate good agreement with theoretical results and molecular simulation


On The Accuracy Of Explicit Finite-Volume Schemes For Fluctuating Hydrodynamics, Aleksandar Donev, Eric Vanden-Eijnden, Alejandro Garcia, John B. Bell Jan 2010

On The Accuracy Of Explicit Finite-Volume Schemes For Fluctuating Hydrodynamics, Aleksandar Donev, Eric Vanden-Eijnden, Alejandro Garcia, John B. Bell

Alejandro Garcia

This paper describes the development and analysis of finite-volume methods for the Landau–Lifshitz Navier–Stokes (LLNS) equations and related stochastic partial differential equations in fluid dynamics. The LLNS equations incorporate thermal fluctuations into macroscopic hydrodynamics by the addition of white noise fluxes whose magnitudes are set by a fluctuation-dissipation relation. Originally derived for equilibrium fluctuations, the LLNS equations have also been shown to be accurate for nonequilibrium systems. Previous studies of numerical methods for the LLNS equations focused primarily on measuring variances and correlations computed at equilibrium and for selected nonequilibrium flows. In this paper, we introduce a more systematic approach …


A Hybrid Particle-Continuum Method For Hydrodynamics Of Complex Fluids, Alejandro Garcia, Aleksandar Donev, John B. Bell, Berni Alder Jan 2010

A Hybrid Particle-Continuum Method For Hydrodynamics Of Complex Fluids, Alejandro Garcia, Aleksandar Donev, John B. Bell, Berni Alder

Alejandro Garcia

A previously developed hybrid particle-continuum method [J. B. Bell, A. Garcia, and S. A. Williams, Multiscale Model. Simul., 6 (2008), pp. 1256–1280] is generalized to dense fluids and two- and three-dimensional flows. The scheme couples an explicit fluctuating compressible Navier–Stokes solver with the isotropic direct simulation Monte Carlo (DSMC) particle method [A. Donev, A. L. Garcia, and B. J. Alder, J. Stat. Mech. Theory Exp., 2009 (2009), article P11008]. To achieve bidirectional dynamic coupling between the particle (microscale) and continuum (macroscale) regions, the continuum solver provides state-based boundary conditions to the particle subdomain, while the particle solver provides flux-based boundary …


Matter-Wave Self-Imaging By Atomic Center-Of-Mass Motion Induced Interference, Ke Li, L. Deng, E. W. Hagley, Marvin G. Payne, M. S. Zhan Dec 2008

Matter-Wave Self-Imaging By Atomic Center-Of-Mass Motion Induced Interference, Ke Li, L. Deng, E. W. Hagley, Marvin G. Payne, M. S. Zhan

Marvin G. Payne

We demonstrate matter-wave self-imaging resulting from atomic center-of-mass motion-based interference. We show that non-negligible atomic center-of-mass motion and an instantaneous Doppler shift can drastically change the condensate momentum distribution, resulting in a periodic collapse and the recurrence of condensate diffraction probability as a function of the stationary light-field pulsing time. The observed matter-wave self-imaging is characterized by an atomic center-of-mass motion induced population amplitude interference in the presence of the light field that simultaneously minimizes all high (n≥1) diffraction orders and maximizes the zeroth diffraction component.


Fast-Responding Nonlinear Phase Shifter Using A Signal-Wave Gain Medium, K. J. Jiang, L. Deng, E. W. Hagley, Marvin G. Payne Apr 2008

Fast-Responding Nonlinear Phase Shifter Using A Signal-Wave Gain Medium, K. J. Jiang, L. Deng, E. W. Hagley, Marvin G. Payne

Marvin G. Payne

Using a full density matrix formalism we show that for a lifetime broadened four-level scheme with a signal wave gain medium a large nonlinear phase shift can be induced without signal wave slowdown and attenuation. In this system the signal wave acquires a large nonlinear phase shift and travels with superluminal propagation characteristics. This raises the possibility of rapidly responding nonlinear phase shifting and possibly phase gating devices for information science.


Stochastic Hard-Sphere Dynamics For Hydrodynamics Of Non-Ideal Fluids, Alejandro Garcia, Aleksandar Donev, Berni J. Alder Jan 2008

Stochastic Hard-Sphere Dynamics For Hydrodynamics Of Non-Ideal Fluids, Alejandro Garcia, Aleksandar Donev, Berni J. Alder

Alejandro Garcia

A novel stochastic fluid model is proposed with a nonideal structure factor consistent with compressibility, and adjustable transport coefficients. This stochastic hard sphere dynamics (SHSD) algorithm is a modification of the direct simulation Monte Carlo algorithm and has several computational advantages over event-driven hard-sphere molecular dynamics. Surprisingly, SHSD results in an equation of state and a pair correlation function identical to that of a deterministic Hamiltonian system of penetrable spheres interacting with linear core pair potentials. The fluctuating hydrodynamic behavior of the SHSD fluid is verified for the Brownian motion of a nanoparticle suspended in a compressible solvent.


Algorithm Refinement For Fluctuating Hydrodynamics, Alejandro Garcia, Sarah Williams, John B. Bell Jan 2007

Algorithm Refinement For Fluctuating Hydrodynamics, Alejandro Garcia, Sarah Williams, John B. Bell

Alejandro Garcia

This paper introduces an adaptive mesh and algorithm refinement method for fluctuating hydrodynamics. This particle-continuum hybrid simulates the dynamics of a compressible fluid with thermal fluctuations. The particle algorithm is direct simulation Monte Carlo (DSMC), a molecular-level scheme based on the Boltzmann equation. The continuum algorithm is based on the Landau–Lifshitz Navier–Stokes (LLNS) equations, which incorporate thermal fluctuations into macroscopic hydrodynamics by using stochastic fluxes. It uses a recently developed solver for the LLNS equations based on third-order Runge–Kutta. We present numerical tests of systems in and out of equilibrium, including time-dependent systems, and demonstrate dynamic adaptive refinement by the …


Numerical Methods For The Stochastic Landau-Lifshitz Navier-Stokes Equations, Alejandro Garcia, John B. Bell, Sarah Williams Jan 2007

Numerical Methods For The Stochastic Landau-Lifshitz Navier-Stokes Equations, Alejandro Garcia, John B. Bell, Sarah Williams

Alejandro Garcia

The Landau-Lifshitz Navier-Stokes (LLNS) equations incorporate thermal fluctuations into macroscopic hydrodynamics by using stochastic fluxes. This paper examines explicit Eulerian discretizations of the full LLNS equations. Several computational fluid dynamics approaches are considered (including MacCormack’s two-step Lax-Wendroff scheme and the piecewise parabolic method) and are found to give good results for the variance of momentum fluctuations. However, neither of these schemes accurately reproduces the fluctuations in energy or density. We introduce a conservative centered scheme with a third-order Runge-Kutta temporal integrator that does accurately produce fluctuations in density, energy, and momentum. A variety of numerical tests, including the random walk …


Estimating Hydrodynamic Quantities In The Presence Of Microscopic Fluctuations, Alejandro Garcia Jan 2006

Estimating Hydrodynamic Quantities In The Presence Of Microscopic Fluctuations, Alejandro Garcia

Alejandro Garcia

This paper discusses the evaluation of hydrodynamic variables in the presence of spontaneous fluctuations, such as in molecular simulations of fluid flows. The principal point is that hydrodynamic variables such as fluid velocity and temperature must be defined in terms of mechanical variables such as momentum and energy density). Because these relations are nonlinear and because fluctuations of mechanical variables are correlated, care must be taken to avoid introducing a bias when evaluating means, variances, and correlations of hydrodynamic variables. The unbiased estimates are formulated; some alternative, incorrect approaches are presented as cautionary warnings. The expressions are verified by numerical …


Hydrodynamic Description Of The Adiabatic Piston, Alejandro Garcia, Malek M. Mansour Jan 2006

Hydrodynamic Description Of The Adiabatic Piston, Alejandro Garcia, Malek M. Mansour

Alejandro Garcia

A closed macroscopic equation for the motion of the two-dimensional adiabatic piston is derived from standard hydrodynamics. It predicts a damped oscillatory motion of the piston towards a final rest position, which depends on the initial state. In the limit of large piston mass, the solution of this equation is in quantitative agreement with the results obtained from both hard disk molecular dynamics and hydrodynamics. The explicit forms of the basic characteristics of the piston’s dynamics, such as the period of oscillations and the relaxation time, are derived. The limitations of the theory’s validity, in terms of the main system …


Rectification Of Thermal Fluctuations In Ideal Gases, Alejandro Garcia, P. Meurs, C. Van De Broeck Jan 2004

Rectification Of Thermal Fluctuations In Ideal Gases, Alejandro Garcia, P. Meurs, C. Van De Broeck

Alejandro Garcia

We calculate the systematic average speed of the adiabatic piston and a thermal Brownian motor, introduced by C. Van den Broeck, R. Kawai and P. Meurs [Phys. Rev. Lett. 93, 090601 (2004)], by an expansion of the Boltzmann equation and compare with the exact numerical solution.


A Direct Simulation Monte Carlo Method For The Uehling-Uhlenbeck-Boltzmann Equation, Alejandro Garcia, Wolfgang Wagner Jan 2003

A Direct Simulation Monte Carlo Method For The Uehling-Uhlenbeck-Boltzmann Equation, Alejandro Garcia, Wolfgang Wagner

Alejandro Garcia

In this paper we describe a direct simulation Monte Carlo algorithm for the Uehling-Uhlenbeck-Boltzmann equation in terms of Markov processes. This provides a unifying framework for both the classical Boltzmann case as well as the Fermi-Dirac and Bose-Einstein cases. We establish the foundation of the algorithm by demonstrating its link to the kinetic equation. By numerical experiments we study its sensitivity to the number of simulation particles and to the discretization of the velocity space, when approximating the steady-state distribution.


Inverted Velocity Profile In The Cylindrical Couette Flow Of A Rarefied Gas, Alejandro Garcia, K. Aoki, H. Yoshida, T. Nakanishi Jan 2003

Inverted Velocity Profile In The Cylindrical Couette Flow Of A Rarefied Gas, Alejandro Garcia, K. Aoki, H. Yoshida, T. Nakanishi

Alejandro Garcia

The cylindrical Couette flow of a rarefied gas is investigated, under the diffuse-specular reflection condition of Maxwell’s type on the cylinders, in the case where the inner cylinder is rotating whereas the outer cylinder is at rest. The inverted velocity profile for small accommodation coefficients, pointed out by Tibbs, Baras, and Garcia [Phys. Rev. E 56, 2282 (1997)] on the basis of a Monte Carlo simulation, is investigated extensively by means of a systematic asymptotic analysis for small Knudsen numbers as well as the direct numerical analysis of the Boltzmann equation, and the parameter range in which the phenomenon appears …


Comment On ‘‘Stress-Density Ratio Slip-Corrected Reynolds Equation For Ultra-Thin Film Gas Bearing Lubrication’’, Alejandro Garcia Jan 2002

Comment On ‘‘Stress-Density Ratio Slip-Corrected Reynolds Equation For Ultra-Thin Film Gas Bearing Lubrication’’, Alejandro Garcia

Alejandro Garcia

No abstract provided.


Molecular Simulations Of Sound Wave Propagation In Simple Gases, Alejandro Garcia, N. Hadjiconstantinou Jan 2001

Molecular Simulations Of Sound Wave Propagation In Simple Gases, Alejandro Garcia, N. Hadjiconstantinou

Alejandro Garcia

Molecular simulations of sound waves propagating in a dilute hard sphere gas have been performed using the direct simulation Monte Carlo method. A wide range of frequencies is investigated, including very high frequencies for which the period is much shorter than the mean collision time. The simulation results are compared to experimental data and approximate solutions of the Boltzmann equation. It is shown that free molecular flow is important at distances smaller than one mean free path from the excitation point.


Time Step Truncation Error In Direct Simulation Monte Carlo, Alejandro Garcia, W. Wagner Jan 2000

Time Step Truncation Error In Direct Simulation Monte Carlo, Alejandro Garcia, W. Wagner

Alejandro Garcia

No abstract provided.


Erratum: "Cell Size Dependence Of Transport Coefficients In Stochastic Particle Algorithms", Alejandro Garcia, Francis Alexander, Berni Alder Jan 2000

Erratum: "Cell Size Dependence Of Transport Coefficients In Stochastic Particle Algorithms", Alejandro Garcia, Francis Alexander, Berni Alder

Alejandro Garcia

No abstract provided.


Burnett Description For Plane Poiseuille Flow, Alejandro Garcia, F. Uribe Jan 1999

Burnett Description For Plane Poiseuille Flow, Alejandro Garcia, F. Uribe

Alejandro Garcia

Two recent works have shown that at small Knudsen number ~K! the pressure and temperature profiles in plane Poiseuille flow exhibit a different qualitative behavior from the profiles obtained by the Navier-Stokes equations. Tij and Santos [J. Stat. Phys. 76, 1399 (1994)] used the Bhatnagar-Gross-Kook model to show that the temperature profile is bimodal and the pressure profile is nonconstant. Malek-Mansour, Baras, and Garcia [Physica A 240, 255 (1997)] qualitatively confirmed these predictions in computer experiments using the direct simulation Monte Carlo method (DSMC). In this paper we compare the DSMC measurements of hydrodynamic variables and non-equilibrium fluxes with numerical …


Cell Size Dependence Of Transport Coefficients In Stochastic Particle Algorithms, Alejandro Garcia, F. Alexander, B. Alder Jan 1998

Cell Size Dependence Of Transport Coefficients In Stochastic Particle Algorithms, Alejandro Garcia, F. Alexander, B. Alder

Alejandro Garcia

Using the Green–Kubo theory, the dependence of the viscosity and thermal conductivity on cell size is obtained explicitly for stochastic particle methods such as direct simulation Monte Carlo (DSMC) and its generalization, the consistent Boltzmann algorithm (CBA). These analytical results confirm empirical observations that significant errors occur when the cell dimensions are larger than a mean free path.


Three-Dimensional Direct Simulation Monte Carlo Method For Slider Air Bearings, Alejandro Garcia, W. Huang, D. B. Bogy Jan 1997

Three-Dimensional Direct Simulation Monte Carlo Method For Slider Air Bearings, Alejandro Garcia, W. Huang, D. B. Bogy

Alejandro Garcia

The direct simulation Monte Carlo (DSMC) method is used to solve the three-dimensional nano-scale gas film lubrication problem between a gas bearing slider and a rotating disk, and this solution is compared to the numerical solution of the compressible Reynolds equations with the slip flow correction based on the linearized Boltzmann equation as presented by Fukui and Kaneko [molecular gas film lubrication (MGL) method] [ASME J. Tribol. 110, 253 (1988)]. In the DSMC method, hundreds of thousands of simulated particles are used and their three velocity components and three spatial coordinates are calculated and recorded by using a hard-sphere collision …


Anomalous Flow Profile Due To The Curvature Effect On Slip Length, Alejandro Garcia, K. Tibbs, F. Baras Jan 1997

Anomalous Flow Profile Due To The Curvature Effect On Slip Length, Alejandro Garcia, K. Tibbs, F. Baras

Alejandro Garcia

No abstract provided.


A Simple Model For Nonequilibrium Fluctuations In A Fluid, Alejandro Garcia, F. Baras, M. Malek Mansour Jan 1996

A Simple Model For Nonequilibrium Fluctuations In A Fluid, Alejandro Garcia, F. Baras, M. Malek Mansour

Alejandro Garcia

Presents a train model that shows the long-range spatial correlations of fluctuations in nonequilibrium fluid systems. Illustration of model through analysis of flat-car trains running on parallel tracks; Simulation of train model in computers; Theoretical analysis for fluctuations in the train model; Relationship between train model and the fluctuating hydrodynamic theory of fluids.


Comment On 'Simulation Of A Two-Dimensional Rayleigh-Bénard System Using The Direct Simulation Monte Carlo Method, Alejandro Garcia, F. Baras, M. Malek Mansour Jan 1995

Comment On 'Simulation Of A Two-Dimensional Rayleigh-Bénard System Using The Direct Simulation Monte Carlo Method, Alejandro Garcia, F. Baras, M. Malek Mansour

Alejandro Garcia

No abstract provided.


A Consistent Boltzmann Algorithm, Alejandro Garcia, F. Alexander, B. Alder Jan 1995

A Consistent Boltzmann Algorithm, Alejandro Garcia, F. Alexander, B. Alder

Alejandro Garcia

The direct simulation Monte Carlo method for the Boltzmann equation is modified by an additional displacement in the advection process and an enhanced collision rate in order to obtain the exact hard sphere equation of state at all densities. This leads to consistent thermodynamic and transport properties in the low density (Boltzmann) regime. At higher densities transport properties are comparable to the predictions of the Enskog model. The algorithm is faster than molecular dynamics at low and moderate densities and readily run on a parallel architecture


Direct Simulation Monte Carlo For Thin Film Bearings, Alejandro Garcia, B. Alder, F. J. Alexander Jan 1994

Direct Simulation Monte Carlo For Thin Film Bearings, Alejandro Garcia, B. Alder, F. J. Alexander

Alejandro Garcia

The direct simulation Monte Carlo (DSMC) scheme is used to study the gas flow under a read/write head positioned nanometers above a moving disk drive platter (the slider bearing problem). In most cases, impressive agreement is found between the particle-based simulation and numerical solutions of the continuum hydrodynamic Reynolds equation which has been corrected for slip. However, at very high platter speeds the gas is far from equilibrium, and the load capacity for the slider bearing cannot be accurately computed from the hydrodynamic pressure.


Microscopic Simulation Of Dilute Gases With Adjustable Transport Coefficients, Alejandro Garcia, F. Baras, M. Malek Mansour Jan 1994

Microscopic Simulation Of Dilute Gases With Adjustable Transport Coefficients, Alejandro Garcia, F. Baras, M. Malek Mansour

Alejandro Garcia

The Bird algorithm is a computationally efficient method for simulating dilute gas flows. However, due to the relatively large transport coefficients at low densities, high Rayleigh or Reynolds numbers are difficult to achieve by this technique. We present a modified version of the Bird algorithm in which the relaxation processes are enhanced and the transport coefficients reduced, while preserving the correct equilibrium and nonequilibrium fluid properties. The present algorithm is found to be two to three orders of magnitude faster than molecular dynamics for simulating complex hydrodynamical flows.